Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 47

1.

Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes.

Indrischek H, Prohaska SJ, Gurevich VV, Gurevich EV, Stadler PF.

BMC Evol Biol. 2017 Jul 6;17(1):163. doi: 10.1186/s12862-017-1001-4.

2.

The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling.

Peterson YK, Luttrell LM.

Pharmacol Rev. 2017 Jul;69(3):256-297. doi: 10.1124/pr.116.013367. Review.

PMID:
28626043
3.

Functional and structural characterization of axonal opioid receptors as targets for analgesia.

Mambretti EM, Kistner K, Mayer S, Massotte D, Kieffer BL, Hoffmann C, Reeh PW, Brack A, Asan E, Rittner HL.

Mol Pain. 2016 Mar 1;12. pii: 1744806916628734. doi: 10.1177/1744806916628734. Print 2016.

4.

β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.

Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB, Lohse MJ, Hoffmann C.

Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.

5.

A G Protein-biased Designer G Protein-coupled Receptor Useful for Studying the Physiological Relevance of Gq/11-dependent Signaling Pathways.

Hu J, Stern M, Gimenez LE, Wanka L, Zhu L, Rossi M, Meister J, Inoue A, Beck-Sickinger AG, Gurevich VV, Wess J.

J Biol Chem. 2016 Apr 8;291(15):7809-20. doi: 10.1074/jbc.M115.702282. Epub 2016 Feb 5.

6.

Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist.

Sánchez-Soto M, Bonifazi A, Cai NS, Ellenberger MP, Newman AH, Ferré S, Yano H.

Mol Pharmacol. 2016 Apr;89(4):457-66. doi: 10.1124/mol.115.101808. Epub 2016 Feb 3.

7.

Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs.

Gurevich VV, Gurevich EV.

Crit Rev Biochem Mol Biol. 2015;50(5):440-52. doi: 10.3109/10409238.2015.1067185. Review.

8.

Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.

Donthamsetti P, Quejada JR, Javitch JA, Gurevich VV, Lambert NA.

Curr Protoc Pharmacol. 2015 Sep 1;70:2.14.1-14. doi: 10.1002/0471141755.ph0214s70.

9.
10.

Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor.

Chang SD, Mascarella SW, Spangler SM, Gurevich VV, Navarro HA, Carroll FI, Bruchas MR.

Mol Pharmacol. 2015 Sep;88(3):502-11. doi: 10.1124/mol.115.099150. Epub 2015 Jul 1.

11.

Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex.

Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A.

Sci Rep. 2015 Jun 1;5:10760. doi: 10.1038/srep10760.

12.

GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1-2 September 2014.

Heifetz A, Schertler GF, Seifert R, Tate CG, Sexton PM, Gurevich VV, Fourmy D, Cherezov V, Marshall FH, Storer RI, Moraes I, Tikhonova IG, Tautermann CS, Hunt P, Ceska T, Hodgson S, Bodkin MJ, Singh S, Law RJ, Biggin PC.

Naunyn Schmiedebergs Arch Pharmacol. 2015 Aug;388(8):883-903. doi: 10.1007/s00210-015-1111-8. Epub 2015 Mar 14.

13.

G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJ, Gurevich VV, Gurevich EV.

J Biol Chem. 2015 Apr 24;290(17):10775-90. doi: 10.1074/jbc.M115.644773. Epub 2015 Mar 13.

14.

Arrestin expression in E. coli and purification.

Vishnivetskiy SA, Zhan X, Chen Q, Iverson TM, Gurevich VV.

Curr Protoc Pharmacol. 2014 Dec 1;67:Unit 2.11.1-19. doi: 10.1002/0471141755.ph0211s67.

15.

Identification of receptor binding-induced conformational changes in non-visual arrestins.

Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS.

J Biol Chem. 2014 Jul 25;289(30):20991-1002. doi: 10.1074/jbc.M114.560680. Epub 2014 May 27.

16.

Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding.

Sinha A, Jones Brunette AM, Fay JF, Schafer CT, Farrens DL.

Biochemistry. 2014 May 27;53(20):3294-307. doi: 10.1021/bi401534y. Epub 2014 May 13.

17.

Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.

Gimenez LE, Babilon S, Wanka L, Beck-Sickinger AG, Gurevich VV.

Cell Signal. 2014 Jul;26(7):1523-31. doi: 10.1016/j.cellsig.2014.03.019. Epub 2014 Mar 29.

18.

Extensive shape shifting underlies functional versatility of arrestins.

Gurevich VV, Gurevich EV.

Curr Opin Cell Biol. 2014 Apr;27:1-9. doi: 10.1016/j.ceb.2013.10.007. Epub 2013 Nov 16. Review.

19.

Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains.

Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV.

Cell Signal. 2014 Apr;26(4):766-76. doi: 10.1016/j.cellsig.2014.01.001. Epub 2014 Jan 8.

20.

Arrestin-dependent activation of JNK family kinases.

Zhan X, Kook S, Gurevich EV, Gurevich VV.

Handb Exp Pharmacol. 2014;219:259-80. doi: 10.1007/978-3-642-41199-1_13.

Supplemental Content

Support Center