Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

"Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.

Bogdanova A, Petrushanko IY, Hernansanz-Agustín P, Martínez-Ruiz A.

Front Physiol. 2016 Aug 2;7:314. doi: 10.3389/fphys.2016.00314. eCollection 2016. Review.

2.

Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis.

Shah PT, Martin R, Yan Y, Shapiro JI, Liu J.

Front Physiol. 2016 Jun 28;7:256. doi: 10.3389/fphys.2016.00256. eCollection 2016. Review.

3.

Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease.

Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, Zhang J.

J Physiol. 2016 Nov 1;594(21):6079-6103. doi: 10.1113/JP272419. Epub 2016 Jul 31.

PMID:
27350568
4.

Different Modulatory Mechanisms of Renal FXYD12 for Na(+)-K(+)-ATPase between Two Closely Related Medakas upon Salinity Challenge.

Yang WK, Kang CK, Hsu AD, Lin CH, Lee TH.

Int J Biol Sci. 2016 Apr 28;12(6):730-45. doi: 10.7150/ijbs.15066. eCollection 2016.

5.

Beneficial Renal and Pancreatic Phenotypes in a Mouse Deficient in FXYD2 Regulatory Subunit of Na,K-ATPase.

Arystarkhova E.

Front Physiol. 2016 Mar 7;7:88. doi: 10.3389/fphys.2016.00088. eCollection 2016. Review.

6.

Importance of the Voltage Dependence of Cardiac Na/K ATPase Isozymes.

Stanley CM, Gagnon DG, Bernal A, Meyer DJ, Rosenthal JJ, Artigas P.

Biophys J. 2015 Nov 3;109(9):1852-62. doi: 10.1016/j.bpj.2015.09.015.

7.

The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle.

Juel C, Hostrup M, Bangsbo J.

Physiol Rep. 2015 Aug;3(8). pii: e12515. doi: 10.14814/phy2.12515.

8.

Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

Chia KK, Liu CC, Hamilton EJ, Garcia A, Fry NA, Hannam W, Figtree GA, Rasmussen HH.

Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50. doi: 10.1152/ajpcell.00392.2014. Epub 2015 Jun 17.

9.

β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

Karimi Galougahi K, Liu CC, Garcia A, Fry NA, Hamilton EJ, Figtree GA, Rasmussen HH.

Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C286-95. doi: 10.1152/ajpcell.00071.2015. Epub 2015 Jun 10.

10.

FXYD2, a γ subunit of Na⁺, K⁺-ATPase, maintains persistent mechanical allodynia induced by inflammation.

Wang F, Cai B, Li KC, Hu XY, Lu YJ, Wang Q, Bao L, Zhang X.

Cell Res. 2015 Mar;25(3):318-34. doi: 10.1038/cr.2015.12. Epub 2015 Jan 30.

11.

Substrate recognition by the cell surface palmitoyl transferase DHHC5.

Howie J, Reilly L, Fraser NJ, Vlachaki Walker JM, Wypijewski KJ, Ashford ML, Calaghan SC, McClafferty H, Tian L, Shipston MJ, Boguslavskyi A, Shattock MJ, Fuller W.

Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17534-9. doi: 10.1073/pnas.1413627111. Epub 2014 Nov 24.

12.

Oxidative stress (glutathionylation) and Na,K-ATPase activity in rat skeletal muscle.

Juel C.

PLoS One. 2014 Oct 13;9(10):e110514. doi: 10.1371/journal.pone.0110514. eCollection 2014.

13.

S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing.

Yang Y, Jin X, Jiang C.

Antioxid Redox Signal. 2014 Feb 20;20(6):937-51. doi: 10.1089/ars.2013.5483. Epub 2013 Aug 20. Review.

14.

Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

Liu CC, Karimi Galougahi K, Weisbrod RM, Hansen T, Ravaie R, Nunez A, Liu YB, Fry N, Garcia A, Hamilton EJ, Sweadner KJ, Cohen RA, Figtree GA.

Free Radic Biol Med. 2013 Dec;65:563-72. doi: 10.1016/j.freeradbiomed.2013.06.040. Epub 2013 Jun 28.

15.

Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

Galougahi KK, Liu CC, Garcia A, Fry NA, Hamilton EJ, Rasmussen HH, Figtree GA.

J Physiol. 2013 Jun 15;591(12):2999-3015. doi: 10.1113/jphysiol.2013.252817. Epub 2013 Apr 15.

16.

A separate pool of cardiac phospholemman that does not regulate or associate with the sodium pump: multimers of phospholemman in ventricular muscle.

Wypijewski KJ, Howie J, Reilly L, Tulloch LB, Aughton KL, McLatchie LM, Shattock MJ, Calaghan SC, Fuller W.

J Biol Chem. 2013 May 10;288(19):13808-20. doi: 10.1074/jbc.M113.460956. Epub 2013 Mar 26.

17.

Hyperplasia of pancreatic beta cells and improved glucose tolerance in mice deficient in the FXYD2 subunit of Na,K-ATPase.

Arystarkhova E, Liu YB, Salazar C, Stanojevic V, Clifford RJ, Kaplan JH, Kidder GM, Sweadner KJ.

J Biol Chem. 2013 Mar 8;288(10):7077-85. doi: 10.1074/jbc.M112.401190. Epub 2013 Jan 23.

18.

Regulation of the cardiac sodium pump.

Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ.

Cell Mol Life Sci. 2013 Apr;70(8):1357-80. doi: 10.1007/s00018-012-1134-y. Epub 2012 Sep 7. Review.

19.

S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity.

Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X, Anashkina AA, Makhro A, Lopina OD, Gassmann M, Makarov AA, Bogdanova A.

J Biol Chem. 2012 Sep 14;287(38):32195-205. doi: 10.1074/jbc.M112.391094. Epub 2012 Jul 13.

20.

Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling.

Liu J, Kennedy DJ, Yan Y, Shapiro JI.

Int J Nephrol. 2012;2012:381320. doi: 10.1155/2012/381320. Epub 2012 Feb 23.

Supplemental Content

Support Center