Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 37

1.

Polyadenylated tail length variation pattern in ultra-rapid vitrified bovine oocytes.

Dutta DJ, Raj H, Dev AH.

Vet World. 2016 Oct;9(10):1070-1074. Epub 2016 Oct 14.

2.

Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.

Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID.

Sci Rep. 2016 Nov 3;6:36055. doi: 10.1038/srep36055.

3.

Different Regulations of ROM2 and LRG1 Expression by Ccr4, Pop2, and Dhh1 in the Saccharomyces cerevisiae Cell Wall Integrity Pathway.

Li X, Ohmori T, Irie K, Kimura Y, Suda Y, Mizuno T, Irie K.

mSphere. 2016 Sep 28;1(5). pii: e00250-16. eCollection 2016 Sep-Oct.

4.

CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum.

Dai Y, Cao Z, Huang L, Liu S, Shen Z, Wang Y, Wang H, Zhang H, Li D, Song F.

Front Microbiol. 2016 Sep 16;7:1449. eCollection 2016.

5.

The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals.

Tucey TM, Verma-Gaur J, Nguyen J, Hewitt VL, Lo TL, Shingu-Vazquez M, Robertson AA, Hill JR, Pettolino FA, Beddoe T, Cooper MA, Naderer T, Traven A.

mSphere. 2016 May 25;1(3). pii: e00074-16. doi: 10.1128/mSphere.00074-16. eCollection 2016 May-Jun.

6.

The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans.

Caza M, Hu G, Price M, Perfect JR, Kronstad JW.

mSphere. 2016 Jan 13;1(1). pii: e00080-15. doi: 10.1128/mSphere.00080-15. eCollection 2016 Jan-Feb.

7.

Exploiting mitochondria as targets for the development of new antifungals.

Li D, Calderone R.

Virulence. 2017 Feb 17;8(2):159-168. doi: 10.1080/21505594.2016.1188235. Epub 2016 May 18.

8.

Post-transcriptional gene regulation in the biology and virulence of Candida albicans.

Verma-Gaur J, Traven A.

Cell Microbiol. 2016 Jun;18(6):800-6. doi: 10.1111/cmi.12593. Epub 2016 Apr 14. Review.

9.

Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

Verma-Gaur J, Qu Y, Harrison PF, Lo TL, Quenault T, Dagley MJ, Bellousoff M, Powell DR, Beilharz TH, Traven A.

PLoS Genet. 2015 Oct 16;11(10):e1005590. doi: 10.1371/journal.pgen.1005590. eCollection 2015 Oct.

10.

Functional diversity of complex I subunits in Candida albicans mitochondria.

Li D, She X, Calderone R.

Curr Genet. 2016 Feb;62(1):87-95. doi: 10.1007/s00294-015-0518-6. Epub 2015 Sep 15. Review.

11.

System-level impact of mitochondria on fungal virulence: to metabolism and beyond.

Calderone R, Li D, Traven A.

FEMS Yeast Res. 2015 Jun;15(4):fov027. doi: 10.1093/femsyr/fov027. Epub 2015 May 21. Review.

12.

Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models.

Amorim-Vaz S, Delarze E, Ischer F, Sanglard D, Coste AT.

Front Microbiol. 2015 May 5;6:367. doi: 10.3389/fmicb.2015.00367. eCollection 2015.

13.

Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis.

She X, Khamooshi K, Gao Y, Shen Y, Lv Y, Calderone R, Fonzi W, Liu W, Li D.

Cell Microbiol. 2015 Sep;17(9):1350-64. doi: 10.1111/cmi.12438. Epub 2015 Apr 16.

14.

Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans.

Do E, Hu G, Caza M, Oliveira D, Kronstad JW, Jung WH.

Fungal Genet Biol. 2015 Feb;75:11-9. doi: 10.1016/j.fgb.2014.12.006. Epub 2014 Dec 29.

15.

Masking of β(1-3)-glucan in the cell wall of Candida albicans from detection by innate immune cells depends on phosphatidylserine.

Davis SE, Hopke A, Minkin SC Jr, Montedonico AE, Wheeler RT, Reynolds TB.

Infect Immun. 2014 Oct;82(10):4405-13. doi: 10.1128/IAI.01612-14. Epub 2014 Aug 11.

16.

Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels.

Brown AJ, Brown GD, Netea MG, Gow NA.

Trends Microbiol. 2014 Nov;22(11):614-22. doi: 10.1016/j.tim.2014.07.001. Epub 2014 Jul 31. Review.

17.

Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans.

Sellam A, van het Hoog M, Tebbji F, Beaurepaire C, Whiteway M, Nantel A.

Eukaryot Cell. 2014 May;13(5):675-90. doi: 10.1128/EC.00292-13. Epub 2014 Mar 28.

18.

The pathogen Candida albicans hijacks pyroptosis for escape from macrophages.

Uwamahoro N, Verma-Gaur J, Shen HH, Qu Y, Lewis R, Lu J, Bambery K, Masters SL, Vince JE, Naderer T, Traven A.

MBio. 2014 Mar 25;5(2):e00003-14. doi: 10.1128/mBio.00003-14.

19.

A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition.

Childers DS, Mundodi V, Banerjee M, Kadosh D.

Mol Microbiol. 2014 May;92(3):570-85. doi: 10.1111/mmi.12576. Epub 2014 Mar 28.

20.

A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans.

Kim JH, Lee HO, Cho YJ, Kim J, Chun J, Choi J, Lee Y, Jung WH.

PLoS One. 2014 Feb 20;9(2):e89122. doi: 10.1371/journal.pone.0089122. eCollection 2014.

Supplemental Content

Support Center