Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 18

1.

Cavity hydration dynamics in cytochrome c oxidase and functional implications.

Son CY, Yethiraj A, Cui Q.

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8830-E8836. doi: 10.1073/pnas.1707922114. Epub 2017 Oct 2.

PMID:
28973914
2.

Understanding the essential proton-pumping kinetic gates and decoupling mutations in cytochrome c oxidase.

Liang R, Swanson JMJ, Wikström M, Voth GA.

Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5924-5929. doi: 10.1073/pnas.1703654114. Epub 2017 May 23.

PMID:
28536198
3.

Analyzing the electrogenicity of cytochrome c oxidase.

Kim I, Warshel A.

Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7810-5. doi: 10.1073/pnas.1608118113. Epub 2016 Jun 28.

4.

Structural Changes and Proton Transfer in Cytochrome c Oxidase.

Vilhjálmsdóttir J, Johansson AL, Brzezinski P.

Sci Rep. 2015 Aug 27;5:12047. doi: 10.1038/srep12047.

5.

Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.

von Ballmoos C, Gonska N, Lachmann P, Gennis RB, Ädelroth P, Brzezinski P.

Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3397-402. doi: 10.1073/pnas.1422434112. Epub 2015 Mar 2.

6.
7.

Changing hydration level in an internal cavity modulates the proton affinity of a key glutamate in cytochrome c oxidase.

Goyal P, Lu J, Yang S, Gunner MR, Cui Q.

Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18886-91. doi: 10.1073/pnas.1313908110. Epub 2013 Nov 6.

8.

Functions of the hydrophilic channels in protonmotive cytochrome c oxidase.

Rich PR, Maréchal A.

J R Soc Interface. 2013 Jul 17;10(86):20130183. doi: 10.1098/rsif.2013.0183. Print 2013 Sep 6. Review.

9.

Role of aspartate 132 at the orifice of a proton pathway in cytochrome c oxidase.

Johansson AL, Högbom M, Carlsson J, Gennis RB, Brzezinski P.

Proc Natl Acad Sci U S A. 2013 May 28;110(22):8912-7. doi: 10.1073/pnas.1303954110. Epub 2013 May 14.

10.

Molecular mechanisms for generating transmembrane proton gradients.

Gunner MR, Amin M, Zhu X, Lu J.

Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):892-913. doi: 10.1016/j.bbabio.2013.03.001. Epub 2013 Mar 16. Review.

11.

pH-Dependent conformational changes in proteins and their effect on experimental pK(a)s: the case of Nitrophorin 4.

Di Russo NV, Estrin DA, Martí MA, Roitberg AE.

PLoS Comput Biol. 2012;8(11):e1002761. doi: 10.1371/journal.pcbi.1002761. Epub 2012 Nov 1.

12.

Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase.

Mukherjee S, Warshel A.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14876-81. doi: 10.1073/pnas.1212841109. Epub 2012 Aug 27.

13.

Capturing the energetics of water insertion in biological systems: the water flooding approach.

Chakrabarty S, Warshel A.

Proteins. 2013 Jan;81(1):93-106. doi: 10.1002/prot.24165. Epub 2012 Sep 28.

14.

Insights into the mechanism of proton transport in cytochrome c oxidase.

Yamashita T, Voth GA.

J Am Chem Soc. 2012 Jan 18;134(2):1147-52. doi: 10.1021/ja209176e. Epub 2012 Jan 6.

15.

Expanding the view of proton pumping in cytochrome c oxidase through computer simulation.

Peng Y, Voth GA.

Biochim Biophys Acta. 2012 Apr;1817(4):518-25. doi: 10.1016/j.bbabio.2011.11.017. Epub 2011 Dec 8.

16.

Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase.

Mukherjee S, Warshel A.

Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5. doi: 10.1073/pnas.1117024108. Epub 2011 Dec 5.

17.

Kinetic design of the respiratory oxidases.

von Ballmoos C, Gennis RB, Ädelroth P, Brzezinski P.

Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11057-62. doi: 10.1073/pnas.1104103108. Epub 2011 Jun 20.

18.

Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects.

Johansson AL, Chakrabarty S, Berthold CL, Högbom M, Warshel A, Brzezinski P.

Biochim Biophys Acta. 2011 Sep;1807(9):1083-94. doi: 10.1016/j.bbabio.2011.03.012. Epub 2011 Apr 2.

Supplemental Content

Support Center