Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Assessment and Optimizations of Candida albicans In Vitro Biofilm Assays.

Lohse MB, Gulati M, Valle Arevalo A, Fishburn A, Johnson AD, Nobile CJ.

Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: e02749-16. doi: 10.1128/AAC.02749-16. Print 2017 May.

PMID:
28289028
2.

Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation.

Bawadekar M, Shim D, Johnson CJ, Warner TF, Rebernick R, Damgaard D, Nielsen CH, Pruijn GJM, Nett JE, Shelef MA.

J Autoimmun. 2017 Jun;80:39-47. doi: 10.1016/j.jaut.2017.01.006. Epub 2017 Feb 7.

PMID:
28188029
3.

Critical role for CaFEN1 and CaFEN12 of Candida albicans in cell wall integrity and biofilm formation.

Alfatah M, Bari VK, Nahar AS, Bijlani S, Ganesan K.

Sci Rep. 2017 Jan 12;7:40281. doi: 10.1038/srep40281.

4.

Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development.

Weerasekera MM, Wijesinghe GK, Jayarathna TA, Gunasekara CP, Fernando N, Kottegoda N, Samaranayake LP.

Mem Inst Oswaldo Cruz. 2016 Nov;111(11):697-702. doi: 10.1590/0074-02760160294. Epub 2016 Oct 3.

5.

Human iNKT Cells Promote Protective Inflammation by Inducing Oscillating Purinergic Signaling in Monocyte-Derived DCs.

Xu X, Pocock GM, Sharma A, Peery SL, Fites JS, Felley L, Zarnowski R, Stewart D, Berthier E, Klein BS, Sherer NM, Gumperz JE.

Cell Rep. 2016 Sep 20;16(12):3273-85. doi: 10.1016/j.celrep.2016.08.061.

6.

The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

Johnson CJ, Cabezas-Olcoz J, Kernien JF, Wang SX, Beebe DJ, Huttenlocher A, Ansari H, Nett JE.

PLoS Pathog. 2016 Sep 13;12(9):e1005884. doi: 10.1371/journal.ppat.1005884. eCollection 2016 Sep.

7.

Exploiting Interkingdom Interactions for Development of Small-Molecule Inhibitors of Candida albicans Biofilm Formation.

Reen FJ, Phelan JP, Gallagher L, Woods DF, Shanahan RM, Cano R, Ó Muimhneacháin E, McGlacken GP, O'Gara F.

Antimicrob Agents Chemother. 2016 Sep 23;60(10):5894-905. doi: 10.1128/AAC.00190-16. Print 2016 Oct.

8.

A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients.

Rajendran R, Sherry L, Deshpande A, Johnson EM, Hanson MF, Williams C, Munro CA, Jones BL, Ramage G.

Front Microbiol. 2016 Jun 16;7:915. doi: 10.3389/fmicb.2016.00915. eCollection 2016.

9.
10.

Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.

Trivedi A, Mavi PS, Bhatt D, Kumar A.

Nat Commun. 2016 Apr 25;7:11392. doi: 10.1038/ncomms11392.

11.

Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.

Haque F, Alfatah M, Ganesan K, Bhattacharyya MS.

Sci Rep. 2016 Mar 31;6:23575. doi: 10.1038/srep23575.

12.

Targeting Fibronectin To Disrupt In Vivo Candida albicans Biofilms.

Nett JE, Cabezas-Olcoz J, Marchillo K, Mosher DF, Andes DR.

Antimicrob Agents Chemother. 2016 Apr 22;60(5):3152-5. doi: 10.1128/AAC.03094-15. Print 2016 May.

13.

Nylon-3 polymers active against drug-resistant Candida albicans biofilms.

Liu R, Chen X, Falk SP, Masters KS, Weisblum B, Gellman SH.

J Am Chem Soc. 2015 Feb 18;137(6):2183-6. doi: 10.1021/ja512567y. Epub 2015 Feb 4.

14.

Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity.

Sherry L, Rajendran R, Lappin DF, Borghi E, Perdoni F, Falleni M, Tosi D, Smith K, Williams C, Jones B, Nile CJ, Ramage G.

BMC Microbiol. 2014 Jul 5;14:182. doi: 10.1186/1471-2180-14-182.

15.

A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans.

Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D, Andes DR, Kuchler K, Johnson AD.

MBio. 2014 Jun 10;5(3):e01201-14. doi: 10.1128/mBio.01201-14.

16.

Synthesis and antifungal activity in vitro of isoniazid derivatives against histoplasma capsulatum var. capsulatum.

de Aguiar Cordeiro R, de Farias Marques FJ, de Aguiar Cordeiro R, da Silva MR, Donato Maia Malaquias A, Silva de Melo CV, Mafezoli J, Ferreira de Oliveira Mda C, Nogueira Brilhante RS, Gadelha Rocha MF, Pinheiro Gomes Bandeira Tde J, Costa Sidrim JJ.

Antimicrob Agents Chemother. 2014 May;58(5):2504-11. doi: 10.1128/AAC.01654-13. Epub 2014 Feb 10.

17.

Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates.

You J, Du L, King JB, Hall BE, Cichewicz RH.

ACS Chem Biol. 2013 Apr 19;8(4):840-8. doi: 10.1021/cb400009f. Epub 2013 Feb 14.

18.

Role of matrix β-1,3 glucan in antifungal resistance of non-albicans Candida biofilms.

Mitchell KF, Taff HT, Cuevas MA, Reinicke EL, Sanchez H, Andes DR.

Antimicrob Agents Chemother. 2013 Apr;57(4):1918-20. doi: 10.1128/AAC.02378-12. Epub 2013 Jan 14.

19.

A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance.

Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR.

PLoS Pathog. 2012;8(8):e1002848. doi: 10.1371/journal.ppat.1002848. Epub 2012 Aug 2.

20.

Fungal biofilm resistance.

Ramage G, Rajendran R, Sherry L, Williams C.

Int J Microbiol. 2012;2012:528521. doi: 10.1155/2012/528521. Epub 2012 Feb 8.

Supplemental Content

Support Center