Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease.

Zhao X, Chen XQ, Han E, Hu Y, Paik P, Ding Z, Overman J, Lau AL, Shahmoradian SH, Chiu W, Thompson LM, Wu C, Mobley WC.

Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5655-64. doi: 10.1073/pnas.1603020113.

2.

Transcriptome sequencing reveals aberrant alternative splicing in Huntington's disease.

Lin L, Park JW, Ramachandran S, Zhang Y, Tseng YT, Shen S, Waldvogel HJ, Curtis MA, Faull RL, Troncoso JC, Pletnikova O, Ross CA, Davidson BL, Xing Y.

Hum Mol Genet. 2016 Aug 15;25(16):3454-3466. doi: 10.1093/hmg/ddw187.

PMID:
27378699
3.

Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington's disease.

Estrada-Sánchez AM, Burroughs CL, Cavaliere S, Barton SJ, Chen S, Yang XW, Rebec GV.

J Neurosci. 2015 Mar 11;35(10):4440-51. doi: 10.1523/JNEUROSCI.2812-14.2015.

4.

Components of the endocannabinoid and dopamine systems are dysregulated in Huntington's disease: analysis of publicly available microarray datasets.

Laprairie RB, Bagher AM, Precious SV, Denovan-Wright EM.

Pharmacol Res Perspect. 2015 Feb;3(1):e00104. doi: 10.1002/prp2.104.

5.

The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity.

Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, Offner N, Parker JA, Menet S, Kim J, Lyu J, Choi SH, Cormier K, Edgerly CK, Bordiuk OL, Smith K, Louise A, Halford M, Stacker S, Vert JP, Ferrante RJ, Lu W, Neri C.

PLoS Biol. 2014 Jun 24;12(6):e1001895. doi: 10.1371/journal.pbio.1001895.

6.

Transcription, epigenetics and ameliorative strategies in Huntington's Disease: a genome-wide perspective.

Valor LM.

Mol Neurobiol. 2015 Feb;51(1):406-23. doi: 10.1007/s12035-014-8715-8. Review.

7.

HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response.

Rotblat B, Southwell AL, Ehrnhoefer DE, Skotte NH, Metzler M, Franciosi S, Leprivier G, Somasekharan SP, Barokas A, Deng Y, Tang T, Mathers J, Cetinbas N, Daugaard M, Kwok B, Li L, Carnie CJ, Fink D, Nitsch R, Galpin JD, Ahern CA, Melino G, Penninger JM, Hayden MR, Sorensen PH.

Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3032-7. doi: 10.1073/pnas.1314421111.

8.

Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction.

Baldo B, Soylu R, Petersén A.

PLoS One. 2013 Dec 20;8(12):e83050. doi: 10.1371/journal.pone.0083050.

9.

Mutant huntingtin gene-dose impacts on aggregate deposition, DARPP32 expression and neuroinflammation in HdhQ150 mice.

Young D, Mayer F, Vidotto N, Schweizer T, Berth R, Abramowski D, Shimshek DR, van der Putten PH, Schmid P.

PLoS One. 2013 Sep 23;8(9):e75108. doi: 10.1371/journal.pone.0075108.

10.

Genetic manipulations of mutant huntingtin in mice: new insights into Huntington's disease pathogenesis.

Lee CY, Cantle JP, Yang XW.

FEBS J. 2013 Sep;280(18):4382-94. doi: 10.1111/febs.12418. Review.

11.
12.

A novel cognitive-neurophysiological state biomarker in premanifest Huntington's disease validated on longitudinal data.

Beste C, Stock AK, Ness V, Hoffmann R, Lukas C, Saft C.

Sci Rep. 2013;3:1797. doi: 10.1038/srep01797.

13.

Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo.

Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA.

Cell Stem Cell. 2013 May 2;12(5):616-28. doi: 10.1016/j.stem.2013.03.003.

14.

Role of cerebral cortex in the neuropathology of Huntington's disease.

Estrada-Sánchez AM, Rebec GV.

Front Neural Circuits. 2013 Feb 18;7:19. doi: 10.3389/fncir.2013.00019. Review.

15.

Mouse models of polyglutamine diseases: review and data table. Part I.

Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ.

Mol Neurobiol. 2012 Oct;46(2):393-429. doi: 10.1007/s12035-012-8315-4. Review.

16.

Egr-1 induces DARPP-32 expression in striatal medium spiny neurons via a conserved intragenic element.

Keilani S, Chandwani S, Dolios G, Bogush A, Beck H, Hatzopoulos AK, Rao GN, Thomas EA, Wang R, Ehrlich ME.

J Neurosci. 2012 May 16;32(20):6808-18. doi: 10.1523/JNEUROSCI.5448-11.2012.

17.

Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease.

Tang B, Becanovic K, Desplats PA, Spencer B, Hill AM, Connolly C, Masliah E, Leavitt BR, Thomas EA.

Hum Mol Genet. 2012 Jul 15;21(14):3097-111. doi: 10.1093/hmg/dds132.

18.

Huntington's disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease.

Ehrlich ME.

Neurotherapeutics. 2012 Apr;9(2):270-84. doi: 10.1007/s13311-012-0112-2. Review.

19.

Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease.

Lerner RP, Trejo Martinez Ldel C, Zhu C, Chesselet MF, Hickey MA.

Brain Res Bull. 2012 Apr 10;87(6):571-8. doi: 10.1016/j.brainresbull.2012.01.012.

20.
Items per page

Supplemental Content

Support Center