Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 35

1.

Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes.

Naranjo-Ortíz MA, Brock M, Brunke S, Hube B, Marcet-Houben M, Gabaldón T.

Front Microbiol. 2016 Dec 20;7:2001. doi: 10.3389/fmicb.2016.02001.

2.

Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids.

Li Y, Jia R, Al-Mahamedh HH, Xu D, Gu T.

Front Microbiol. 2016 Jun 13;7:896. doi: 10.3389/fmicb.2016.00896.

3.

Enantioselective Utilization of D-Amino Acids by Deep-Sea Microorganisms.

Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S.

Front Microbiol. 2016 Apr 19;7:511. doi: 10.3389/fmicb.2016.00511.

4.

Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.

Reichau S, Blackmore NJ, Jiao W, Parker EJ.

PLoS One. 2016 Apr 29;11(4):e0152723. doi: 10.1371/journal.pone.0152723.

5.

Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana.

Strauch RC, Svedin E, Dilkes B, Chapple C, Li X.

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11726-31. doi: 10.1073/pnas.1503272112.

6.

The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015).

Le Roux F, Wegner KM, Baker-Austin C, Vezzulli L, Osorio CR, Amaro C, Ritchie JM, Defoirdt T, Destoumieux-Garzón D, Blokesch M, Mazel D, Jacq A, Cava F, Gram L, Wendling CC, Strauch E, Kirschner A, Huehn S.

Front Microbiol. 2015 Aug 13;6:830. doi: 10.3389/fmicb.2015.00830.

7.

Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

Meziane-Cherif D, Stogios PJ, Evdokimova E, Egorova O, Savchenko A, Courvalin P.

MBio. 2015 Aug 11;6(4):e00806. doi: 10.1128/mBio.00806-15.

8.

The Bacillus subtilis tyrZ gene encodes a highly selective tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch.

Williams-Wagner RN, Grundy FJ, Raina M, Ibba M, Henkin TM.

J Bacteriol. 2015 May;197(9):1624-31. doi: 10.1128/JB.00008-15.

9.

Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface.

Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR.

FEMS Microbiol Rev. 2015 Mar;39(2):184-202. doi: 10.1093/femsre/fuu012. Review.

10.

The host metabolite D-serine contributes to bacterial niche specificity through gene selection.

Connolly JP, Goldstone RJ, Burgess K, Cogdell RJ, Beatson SA, Vollmer W, Smith DG, Roe AJ.

ISME J. 2015 Mar 17;9(4):1039-51. doi: 10.1038/ismej.2014.242. Erratum in: ISME J. 2015 Apr;9(4):1052.

11.

Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ.

Kuru E, Tekkam S, Hall E, Brun YV, Van Nieuwenhze MS.

Nat Protoc. 2015 Jan;10(1):33-52. doi: 10.1038/nprot.2014.197.

12.

The taumycin A macrocycle: asymmetric total synthesis and revision of relative stereochemistry.

deGruyter JN, Maio WA.

Org Lett. 2014 Oct 3;16(19):5196-9. doi: 10.1021/ol5025585.

13.

A Highly Stable D-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus.

Takahashi S, Furukawara M, Omae K, Tadokoro N, Saito Y, Abe K, Kera Y.

Appl Environ Microbiol. 2014 Dec;80(23):7219-29. doi: 10.1128/AEM.02193-14.

14.

Activation of N-methyl-d-aspartate receptor downregulates inflammasome activity and liver inflammation via a β-arrestin-2 pathway.

Farooq A, Hoque R, Ouyang X, Farooq A, Ghani A, Ahsan K, Guerra M, Mehal WZ.

Am J Physiol Gastrointest Liver Physiol. 2014 Oct 1;307(7):G732-40. doi: 10.1152/ajpgi.00073.2014.

15.

Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis.

Lebar MD, May JM, Meeske AJ, Leiman SA, Lupoli TJ, Tsukamoto H, Losick R, Rudner DZ, Walker S, Kahne D.

J Am Chem Soc. 2014 Aug 6;136(31):10874-7. doi: 10.1021/ja505668f.

16.

An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans.

Tong Z, Zhang L, Ling J, Jian Y, Huang L, Deng D.

PLoS One. 2014 Jun 17;9(6):e99513. doi: 10.1371/journal.pone.0099513.

17.

Molecular mechanisms involved in Bacillus subtilis biofilm formation.

Mielich-Süss B, Lopez D.

Environ Microbiol. 2015 Mar;17(3):555-65. doi: 10.1111/1462-2920.12527. Review.

18.

Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis.

Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S, Zheng H, Jiang W, Chen D, Zhao GP, Zhao W.

BMC Genomics. 2014 May 13;15:363. doi: 10.1186/1471-2164-15-363.

19.

D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa.

Sanchez CJ Jr, Akers KS, Romano DR, Woodbury RL, Hardy SK, Murray CK, Wenke JC.

Antimicrob Agents Chemother. 2014 Aug;58(8):4353-61. doi: 10.1128/AAC.02468-14.

20.

Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium.

Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C.

Front Plant Sci. 2014 May 6;5:176. doi: 10.3389/fpls.2014.00176. Review.

Items per page

Supplemental Content

Support Center