Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 62

1.

Pro- and Antioxidant Functions of the Peroxisome-Mitochondria Connection and Its Impact on Aging and Disease.

Pascual-Ahuir A, Manzanares-Estreder S, Proft M.

Oxid Med Cell Longev. 2017;2017:9860841. doi: 10.1155/2017/9860841. Epub 2017 Jul 24. Review.

2.

Increased Oxidative Stress Markers in Cerebrospinal Fluid from Healthy Subjects with Parkinson's Disease-Associated LRRK2 Gene Mutations.

Loeffler DA, Klaver AC, Coffey MP, Aasly JO, LeWitt PA.

Front Aging Neurosci. 2017 Apr 3;9:89. doi: 10.3389/fnagi.2017.00089. eCollection 2017.

3.

Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases.

Gao J, Wang L, Liu J, Xie F, Su B, Wang X.

Antioxidants (Basel). 2017 Apr 5;6(2). pii: E25. doi: 10.3390/antiox6020025. Review.

4.

Enteric neurons from Parkinson's disease patients display ex vivo aberrations in mitochondrial structure.

Baumuratov AS, Antony PM, Ostaszewski M, He F, Salamanca L, Antunes L, Weber J, Longhino L, Derkinderen P, Koopman WJ, Diederich NJ.

Sci Rep. 2016 Sep 14;6:33117. doi: 10.1038/srep33117.

5.

Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease.

Hsieh CH, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St Lawrence E, Schüle B, Krainc D, Palmer TD, Wang X.

Cell Stem Cell. 2016 Dec 1;19(6):709-724. doi: 10.1016/j.stem.2016.08.002. Epub 2016 Sep 8.

PMID:
27618216
6.

Mitochondrial dysfunction in Parkinson's disease.

Hu Q, Wang G.

Transl Neurodegener. 2016 Jul 22;5:14. doi: 10.1186/s40035-016-0060-6. eCollection 2016. Review.

7.

microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease.

Xie Y, Chen Y.

Front Neurosci. 2016 Jun 28;10:298. doi: 10.3389/fnins.2016.00298. eCollection 2016. Review.

8.

Rescue of mitochondrial function in parkin-mutant fibroblasts using drug loaded PMPC-PDPA polymersomes and tubular polymersomes.

Yealland G, Battaglia G, Bandmann O, Mortiboys H.

Neurosci Lett. 2016 Sep 6;630:23-9. doi: 10.1016/j.neulet.2016.06.065. Epub 2016 Jul 10.

9.

Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease.

Rosenbusch KE, Kortholt A.

Parkinsons Dis. 2016;2016:7351985. doi: 10.1155/2016/7351985. Epub 2016 May 12. Review.

10.

Parkinson's Disease: The Mitochondria-Iron Link.

Muñoz Y, Carrasco CM, Campos JD, Aguirre P, Núñez MT.

Parkinsons Dis. 2016;2016:7049108. doi: 10.1155/2016/7049108. Epub 2016 May 17. Review.

11.

A Personalized Approach to Parkinson's Disease Patients Based on Founder Mutation Analysis.

Giladi N, Mirelman A, Thaler A, Orr-Urtreger A.

Front Neurol. 2016 May 10;7:71. doi: 10.3389/fneur.2016.00071. eCollection 2016.

12.

Mitochondrial control of cell bioenergetics in Parkinson's disease.

Requejo-Aguilar R, Bolaños JP.

Free Radic Biol Med. 2016 Nov;100:123-137. doi: 10.1016/j.freeradbiomed.2016.04.012. Epub 2016 Apr 16. Review.

PMID:
27091692
13.

Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance.

Hernandez DG, Reed X, Singleton AB.

J Neurochem. 2016 Oct;139 Suppl 1:59-74. doi: 10.1111/jnc.13593. Epub 2016 Apr 18. Review.

14.

Emerging preclinical pharmacological targets for Parkinson's disease.

More SV, Choi DK.

Oncotarget. 2016 May 17;7(20):29835-63. doi: 10.18632/oncotarget.8104. Review.

15.

Parkinson's disease proteins: Novel mitochondrial targets for cardioprotection.

Mukherjee UA, Ong SB, Ong SG, Hausenloy DJ.

Pharmacol Ther. 2015 Dec;156:34-43. doi: 10.1016/j.pharmthera.2015.10.005. Epub 2015 Oct 19. Review.

16.

Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics.

Szalárdy L, Zádori D, Klivényi P, Toldi J, Vécsei L.

Oxid Med Cell Longev. 2015;2015:498401. doi: 10.1155/2015/498401. Epub 2015 Aug 2. Review.

17.

UDCA exerts beneficial effect on mitochondrial dysfunction in LRRK2(G2019S) carriers and in vivo.

Mortiboys H, Furmston R, Bronstad G, Aasly J, Elliott C, Bandmann O.

Neurology. 2015 Sep 8;85(10):846-52. doi: 10.1212/WNL.0000000000001905. Epub 2015 Aug 7.

18.

Cellular processes associated with LRRK2 function and dysfunction.

Wallings R, Manzoni C, Bandopadhyay R.

FEBS J. 2015 Aug;282(15):2806-26. doi: 10.1111/febs.13305. Epub 2015 May 9. Review.

19.

Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice.

Yue M, Hinkle KM, Davies P, Trushina E, Fiesel FC, Christenson TA, Schroeder AS, Zhang L, Bowles E, Behrouz B, Lincoln SJ, Beevers JE, Milnerwood AJ, Kurti A, McLean PJ, Fryer JD, Springer W, Dickson DW, Farrer MJ, Melrose HL.

Neurobiol Dis. 2015 Jun;78:172-95. doi: 10.1016/j.nbd.2015.02.031. Epub 2015 Mar 31.

20.

Threonine 56 phosphorylation of Bcl-2 is required for LRRK2 G2019S-induced mitochondrial depolarization and autophagy.

Su YC, Guo X, Qi X.

Biochim Biophys Acta. 2015 Jan;1852(1):12-21. doi: 10.1016/j.bbadis.2014.11.009. Epub 2014 Nov 15.

Supplemental Content

Support Center