Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38


Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier.

Derk R, Davidson DC, Manke A, Stueckle TA, Rojanasakul Y, Wang L.

Sens Biosensing Res. 2015 Mar;3:38-45. doi: 10.1016/j.sbsr.2014.12.002.


Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells.

Kim BC, Lee I, Kwon SJ, Wee Y, Kwon KY, Jeon C, An HJ, Jung HT, Ha S, Dordick JS, Kim J.

Sci Rep. 2017 Jan 5;7:40202. doi: 10.1038/srep40202.


Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating.

Davidson DC, Derk R, He X, Stueckle TA, Cohen J, Pirela SV, Demokritou P, Rojanasakul Y, Wang L.

Part Fibre Toxicol. 2016 May 4;13(1):23. doi: 10.1186/s12989-016-0134-8.


Microfluidic gradient device for studying mesothelial cell migration and the effect of chronic carbon nanotube exposure.

Zhang H, Lohcharoenkal W, Sun J, Li X, Wang L, Wu N, Rojanasakul Y, Liu Y.

J Micromech Microeng. 2015 Jun 3;25(7). pii: 075010.


Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).

Vietti G, Lison D, van den Brule S.

Part Fibre Toxicol. 2016 Feb 29;13:11. doi: 10.1186/s12989-016-0123-y. Review.


Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis.

Mishra A, Stueckle TA, Mercer RR, Derk R, Rojanasakul Y, Castranova V, Wang L.

Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L821-33. doi: 10.1152/ajplung.00002.2015. Epub 2015 Aug 21.


Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis.

Nowacki M, Wisniewski M, Werengowska-Ciecwierz K, Roszek K, Czarnecka J, Łakomska I, Kloskowski T, Tyloch D, Debski R, Pietkun K, Pokrywczynska M, Grzanka D, Czajkowski R, Drewa G, Jundziłł A, Agyin JK, Habib SL, Terzyk AP, Drewa T.

Oncotarget. 2015 Sep 8;6(26):22776-98.


Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.

Thompson D, Chen SC, Wang J, Pui DY.

Ann Occup Hyg. 2015 Nov;59(9):1135-51. doi: 10.1093/annhyg/mev044. Epub 2015 Jul 23.


High dispersity of carbon nanotubes diminishes immunotoxicity in spleen.

Lee S, Khang D, Kim SH.

Int J Nanomedicine. 2015 Apr 1;10:2697-710. doi: 10.2147/IJN.S80836. eCollection 2015.


Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity.

Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K.

Inhal Toxicol. 2015 Mar;27(4):207-23. doi: 10.3109/08958378.2015.1026620. Epub 2015 Apr 13.


Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes.

Manke A, Luanpitpong S, Rojanasakul Y.

Occup Med Health Aff. 2014;2. pii: 1000165.


Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity.

Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Fröhlich E.

Toxicol Sci. 2015 Mar;144(1):114-27. doi: 10.1093/toxsci/kfu260. Epub 2014 Dec 10.


Generation of reactive oxygen species from silicon nanowires.

Leonard SS, Cohen GM, Kenyon AJ, Schwegler-Berry D, Fix NR, Bangsaruntip S, Roberts JR.

Environ Health Insights. 2014 Nov 9;8(Suppl 1):21-9. doi: 10.4137/EHI.S15261. eCollection 2014.


Chemical basis of interactions between engineered nanoparticles and biological systems.

Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B.

Chem Rev. 2014 Aug 13;114(15):7740-81. doi: 10.1021/cr400295a. Epub 2014 Jun 13. Review. No abstract available.


Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes.

Luanpitpong S, Wang L, Castranova V, Rojanasakul Y.

Part Fibre Toxicol. 2014 May 11;11:22. doi: 10.1186/1743-8977-11-22.


Induction of stemlike cells with fibrogenic properties by carbon nanotubes and its role in fibrogenesis.

Luanpitpong S, Wang L, Manke A, Martin KH, Ammer AG, Castranova V, Yang Y, Rojansakul Y.

Nano Lett. 2014 Jun 11;14(6):3110-6. doi: 10.1021/nl5002026. Epub 2014 May 30.


Effect of fiber length on carbon nanotube-induced fibrogenesis.

Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y.

Int J Mol Sci. 2014 Apr 29;15(5):7444-61. doi: 10.3390/ijms15057444.


Safe clinical use of carbon nanotubes as innovative biomaterials.

Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M.

Chem Rev. 2014 Jun 11;114(11):6040-79. doi: 10.1021/cr400341h. Epub 2014 Apr 10. Review. No abstract available.


Biocompatible dispersion methods for carbon black.

Kim H, Park K, Lee MY.

Toxicol Res. 2012 Dec;28(4):209-16. doi: 10.5487/TR.2012.28.4.209.


Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay.

Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S.

Part Fibre Toxicol. 2013 Oct 10;10:52. doi: 10.1186/1743-8977-10-52.

Supplemental Content

Support Center