Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations.

Peng G, Barro-Soria R, Sampson KJ, Larsson HP, Kass RS.

Sci Rep. 2017 Apr 6;7:45911. doi: 10.1038/srep45911.

2.

hERG S4-S5 linker acts as a voltage-dependent ligand that binds to the activation gate and locks it in a closed state.

Malak OA, Es-Salah-Lamoureux Z, Loussouarn G.

Sci Rep. 2017 Mar 2;7(1):113. doi: 10.1038/s41598-017-00155-2.

3.

Molecular Pathophysiology of Congenital Long QT Syndrome.

Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS.

Physiol Rev. 2017 Jan;97(1):89-134. Review.

PMID:
27807201
4.

Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.

Cui J.

Biophys J. 2016 Jan 5;110(1):14-25. doi: 10.1016/j.bpj.2015.11.023. Review.

5.

Cellular mechanisms of mutations in Kv7.1: auditory functions in Jervell and Lange-Nielsen syndrome vs. Romano-Ward syndrome.

Mousavi Nik A, Gharaie S, Jeong Kim H.

Front Cell Neurosci. 2015 Feb 6;9:32. doi: 10.3389/fncel.2015.00032. eCollection 2015.

6.

PIP₂-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6.

Kasimova MA, Zaydman MA, Cui J, Tarek M.

Sci Rep. 2015 Jan 6;5:7474. doi: 10.1038/srep07474.

7.

Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel.

Peng D, Kim JH, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR.

Biochemistry. 2014 Apr 1;53(12):2032-42. doi: 10.1021/bi500102w. Epub 2014 Mar 18.

8.

Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process.

Garneau L, Klein H, Lavoie MF, Brochiero E, Parent L, Sauvé R.

J Gen Physiol. 2014 Feb;143(2):289-307. doi: 10.1085/jgp.201311097.

9.

An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1.

Yang T, Smith JA, Leake BF, Sanders CR, Meiler J, Roden DM.

Mol Pharmacol. 2013 Feb;83(2):481-9. doi: 10.1124/mol.112.081513. Epub 2012 Nov 28.

10.

Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Na(V)1.7 mutant channel.

Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG.

Nat Commun. 2012;3:1186. doi: 10.1038/ncomms2184.

11.

Being flexible: the voltage-controllable activation gate of kv channels.

Labro AJ, Snyders DJ.

Front Pharmacol. 2012 Sep 13;3:168. eCollection 2012.

12.

Mechanism of electromechanical coupling in voltage-gated potassium channels.

Blunck R, Batulan Z.

Front Pharmacol. 2012 Sep 12;3:166. doi: 10.3389/fphar.2012.00166. eCollection 2012.

13.

Coupling of voltage-sensors to the channel pore: a comparative view.

Vardanyan V, Pongs O.

Front Pharmacol. 2012 Jul 27;3:145. doi: 10.3389/fphar.2012.00145. eCollection 2012.

14.

Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels.

Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G.

Front Pharmacol. 2012 Jul 5;3:125. doi: 10.3389/fphar.2012.00125. eCollection 2012.

15.

A theoretical model for calculating voltage sensitivity of ion channels and the application on Kv1.2 potassium channel.

Yang H, Gao Z, Li P, Yu K, Yu Y, Xu TL, Li M, Jiang H.

Biophys J. 2012 Apr 18;102(8):1815-25. doi: 10.1016/j.bpj.2012.03.032.

16.

Cytoplasmic domains and voltage-dependent potassium channel gating.

Barros F, Domínguez P, de la Peña P.

Front Pharmacol. 2012 Mar 23;3:49. doi: 10.3389/fphar.2012.00049. eCollection 2012.

17.

Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome.

Barsheshet A, Goldenberg I, O-Uchi J, Moss AJ, Jons C, Shimizu W, Wilde AA, McNitt S, Peterson DR, Zareba W, Robinson JL, Ackerman MJ, Cypress M, Gray DA, Hofman N, Kanters JK, Kaufman ES, Platonov PG, Qi M, Towbin JA, Vincent GM, Lopes CM.

Circulation. 2012 Apr 24;125(16):1988-96. doi: 10.1161/CIRCULATIONAHA.111.048041. Epub 2012 Mar 28.

18.

Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome.

Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, Chen L, Hu X, Wang H, Wang X, Zhang P, Liu X, Guan L, Tang Y, Yang H, Tu P, Bu D, Zhu X, Wang K, Li R, Yang Y.

Am J Hum Genet. 2012 Mar 9;90(3):558-64. doi: 10.1016/j.ajhg.2012.02.006.

19.

Double mutant cycle analysis identified a critical leucine residue in the IIS4S5 linker for the activation of the Ca(V)2.3 calcium channel.

Wall-Lacelle S, Hossain MI, Sauvé R, Blunck R, Parent L.

J Biol Chem. 2011 Aug 5;286(31):27197-205. doi: 10.1074/jbc.M111.237412. Epub 2011 Jun 7.

20.

Demonstration of physical proximity between the N terminus and the S4-S5 linker of the human ether-a-go-go-related gene (hERG) potassium channel.

de la Peña P, Alonso-Ron C, Machín A, Fernández-Trillo J, Carretero L, Domínguez P, Barros F.

J Biol Chem. 2011 May 27;286(21):19065-75. doi: 10.1074/jbc.M111.238899. Epub 2011 Apr 7.

Supplemental Content

Support Center