Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

Nanotechnology-Based Approach in Tuberculosis Treatment.

Nasiruddin M, Neyaz MK, Das S.

Tuberc Res Treat. 2017;2017:4920209. doi: 10.1155/2017/4920209. Review.

2.

The nanomaterial toolkit for neuroengineering.

Shah S.

Nano Converg. 2016;3(1):25. doi: 10.1186/s40580-016-0086-6. Review.

3.

Recent trends on hydrogel based drug delivery systems for infectious diseases.

Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta YK, Nair M.

Biomater Sci. 2016 Oct 18;4(11):1535-1553. Review.

PMID:
27709137
4.

Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation.

Caetano LA, Almeida AJ, Gonçalves LM.

Mar Drugs. 2016 May 11;14(5). pii: E90. doi: 10.3390/md14050090.

5.

Polymeric nanoparticles in development for treatment of pulmonary infectious diseases.

Lim YH, Tiemann KM, Hunstad DA, Elsabahy M, Wooley KL.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Nov;8(6):842-871. doi: 10.1002/wnan.1401. Review.

PMID:
27016134
6.

Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs.

Yin R, Agrawal T, Khan U, Gupta GK, Rai V, Huang YY, Hamblin MR.

Nanomedicine (Lond). 2015;10(15):2379-404. doi: 10.2217/nnm.15.67. Review.

7.

Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study.

Niu NK, Yin JJ, Yang YX, Wang ZL, Zhou ZW, He ZX, Chen XW, Zhang X, Duan W, Yang T, Zhou SF.

Drug Des Devel Ther. 2015 Aug 7;9:4441-70. doi: 10.2147/DDDT.S79369.

8.

Systems Pharmacology Approach Toward the Design of Inhaled Formulations of Rifampicin and Isoniazid for Treatment of Tuberculosis.

Cilfone NA, Pienaar E, Thurber GM, Kirschner DE, Linderman JJ.

CPT Pharmacometrics Syst Pharmacol. 2015 Mar;4(3):e00022. doi: 10.1002/psp4.22.

9.
10.

A multi-scale approach to designing therapeutics for tuberculosis.

Linderman JJ, Cilfone NA, Pienaar E, Gong C, Kirschner DE.

Integr Biol (Camb). 2015 May;7(5):591-609. doi: 10.1039/c4ib00295d.

11.

A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment.

Pienaar E, Cilfone NA, Lin PL, Dartois V, Mattila JT, Butler JR, Flynn JL, Kirschner DE, Linderman JJ.

J Theor Biol. 2015 Feb 21;367:166-79. doi: 10.1016/j.jtbi.2014.11.021.

12.

The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells.

Dartois V.

Nat Rev Microbiol. 2014 Mar;12(3):159-67. doi: 10.1038/nrmicro3200. Review.

13.

Bioengineering strategies for designing targeted cancer therapies.

Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X.

Adv Cancer Res. 2013;118:1-59. doi: 10.1016/B978-0-12-407173-5.00002-9. Review.

14.

A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

Carlétti D, Morais da Fonseca D, Gembre AF, Masson AP, Weijenborg Campos L, Leite LC, Rodrigues Pires A, Lannes-Vieira J, Lopes Silva C, Bonato VL, Horn C.

Clin Vaccine Immunol. 2013 Aug;20(8):1162-9. doi: 10.1128/CVI.00148-13.

15.

Vaccine delivery system for tuberculosis based on nano-sized hepatitis B virus core protein particles.

Dhanasooraj D, Kumar RA, Mundayoor S.

Int J Nanomedicine. 2013;8:835-43. doi: 10.2147/IJN.S40238.

16.

Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics.

Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC.

ACS Nano. 2012 May 22;6(5):4279-87. doi: 10.1021/nn3008383.

17.

Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles.

Clemens DL, Lee BY, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA.

Antimicrob Agents Chemother. 2012 May;56(5):2535-45. doi: 10.1128/AAC.06049-11.

18.

An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages.

de Faria TJ, Roman M, de Souza NM, De Vecchi R, de Assis JV, dos Santos AL, Bechtold IH, Winter N, Soares MJ, Silva LP, De Almeida MV, Báfica A.

Antimicrob Agents Chemother. 2012 May;56(5):2259-67. doi: 10.1128/AAC.05993-11.

19.

Cell delivery of therapeutic nanoparticles.

McMillan J, Batrakova E, Gendelman HE.

Prog Mol Biol Transl Sci. 2011;104:563-601. doi: 10.1016/B978-0-12-416020-0.00014-0.

20.

Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles.

Moretton MA, Chiappetta DA, Sosnik A.

J R Soc Interface. 2012 Mar 7;9(68):487-502. doi: 10.1098/rsif.2011.0414.

Supplemental Content

Support Center