Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 171

1.

Role of Tau Acetylation in Alzheimer's Disease and Chronic Traumatic Encephalopathy: The Way Forward for Successful Treatment.

Lucke-Wold B, Seidel K, Udo R, Omalu B, Ornstein M, Nolan R, Rosen C, Ross J.

J Neurol Neurosurg. 2017;4(2). pii: 140. Epub 2017 Dec 7.

2.

Tau-mediated Neurodegeneration and Potential Implications in Diagnosis and Treatment of Alzheimer's Disease.

Wu XL, Piña-Crespo J, Zhang YW, Chen XC, Xu HX.

Chin Med J (Engl). 2017 Dec 20;130(24):2978-2990. doi: 10.4103/0366-6999.220313. Review.

3.

p300-mediated acetylation increased the protein stability of HIPK2 and enhanced its tumor suppressor function.

Choi JR, Lee SY, Shin KS, Choi CY, Kang SJ.

Sci Rep. 2017 Nov 23;7(1):16136. doi: 10.1038/s41598-017-16489-w.

4.

Chemogenomic analysis reveals key role for lysine acetylation in regulating Arc stability.

Lalonde J, Reis SA, Sivakumaran S, Holland CS, Wesseling H, Sauld JF, Alural B, Zhao WN, Steen JA, Haggarty SJ.

Nat Commun. 2017 Nov 21;8(1):1659. doi: 10.1038/s41467-017-01750-7.

5.

Advances in Roles of miR-132 in the Nervous System.

Qian Y, Song J, Ouyang Y, Han Q, Chen W, Zhao X, Xie Y, Chen Y, Yuan W, Fan C.

Front Pharmacol. 2017 Oct 25;8:770. doi: 10.3389/fphar.2017.00770. eCollection 2017. Review.

6.

Alterations of sirtuins in mitochondrial cytochrome c-oxidase deficiency.

Potthast AB, Heuer T, Warneke SJ, Das AM.

PLoS One. 2017 Oct 23;12(10):e0186517. doi: 10.1371/journal.pone.0186517. eCollection 2017.

7.

An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons.

Boselli M, Lee BH, Robert J, Prado MA, Min SW, Cheng C, Silva MC, Seong C, Elsasser S, Hatle KM, Gahman TC, Gygi SP, Haggarty SJ, Gan L, King RW, Finley D.

J Biol Chem. 2017 Nov 24;292(47):19209-19225. doi: 10.1074/jbc.M117.815126. Epub 2017 Sep 26.

PMID:
28972160
8.

Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity.

Gorsky MK, Burnouf S, Sofola-Adesakin O, Dols J, Augustin H, Weigelt CM, Grönke S, Partridge L.

Sci Rep. 2017 Aug 30;7(1):9984. doi: 10.1038/s41598-017-10225-0.

9.

Lysine-Directed Post-translational Modifications of Tau Protein in Alzheimer's Disease and Related Tauopathies.

Kontaxi C, Piccardo P, Gill AC.

Front Mol Biosci. 2017 Aug 11;4:56. doi: 10.3389/fmolb.2017.00056. eCollection 2017. Review.

10.

Amyloidogenesis of Tau protein.

Nizynski B, Dzwolak W, Nieznanski K.

Protein Sci. 2017 Nov;26(11):2126-2150. doi: 10.1002/pro.3275. Epub 2017 Sep 13. Review.

PMID:
28833749
11.

Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory.

Wang G, Li S, Gilbert J, Gritton HJ, Wang Z, Li Z, Han X, Selkoe DJ, Man HY.

Cell Rep. 2017 Aug 8;20(6):1335-1347. doi: 10.1016/j.celrep.2017.07.030.

12.

Emerging Diagnostic and Therapeutic Strategies for Tauopathies.

Coughlin D, Irwin DJ.

Curr Neurol Neurosci Rep. 2017 Sep;17(9):72. doi: 10.1007/s11910-017-0779-1. Review.

PMID:
28785992
13.

The Role of MicroRNAs in Aβ Deposition and Tau Phosphorylation in Alzheimer's Disease.

Zhao J, Yue D, Zhou Y, Jia L, Wang H, Guo M, Xu H, Chen C, Zhang J, Xu L.

Front Neurol. 2017 Jul 18;8:342. doi: 10.3389/fneur.2017.00342. eCollection 2017. Review.

14.

An acetylation-phosphorylation switch that regulates tau aggregation propensity and function.

Carlomagno Y, Chung DC, Yue M, Castanedes-Casey M, Madden BJ, Dunmore J, Tong J, DeTure M, Dickson DW, Petrucelli L, Cook C.

J Biol Chem. 2017 Sep 15;292(37):15277-15286. doi: 10.1074/jbc.M117.794602. Epub 2017 Jul 31.

15.

Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology.

Guo J, Cheng J, North BJ, Wei W.

Biochim Biophys Acta. 2017 Dec;1868(2):341-358. doi: 10.1016/j.bbcan.2017.07.001. Epub 2017 Jul 8. Review.

PMID:
28694093
16.

Glial contributions to neurodegeneration in tauopathies.

Leyns CEG, Holtzman DM.

Mol Neurodegener. 2017 Jun 29;12(1):50. doi: 10.1186/s13024-017-0192-x. Review.

17.

Is SIRT6 Activity Neuroprotective and How Does It Differ from SIRT1 in This Regard?

Tang BL.

Front Cell Neurosci. 2017 Jun 8;11:165. doi: 10.3389/fncel.2017.00165. eCollection 2017. No abstract available.

18.

Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum.

Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD.

Front Mol Neurosci. 2017 May 10;10:119. doi: 10.3389/fnmol.2017.00119. eCollection 2017.

19.

Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture.

Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L.

Mol Neurodegener. 2017 May 19;12(1):41. doi: 10.1186/s13024-017-0176-x.

20.

Roles of tau protein in health and disease.

Guo T, Noble W, Hanger DP.

Acta Neuropathol. 2017 May;133(5):665-704. doi: 10.1007/s00401-017-1707-9. Epub 2017 Apr 6. Review.

Supplemental Content

Support Center