Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.

Chen K, Wei Z, Zhang Q, Wu X, Rong R, Lu Z, Su J, de Magalhães JP, Rigden DJ, Meng J.

Nucleic Acids Res. 2019 Apr 23;47(7):e41. doi: 10.1093/nar/gkz074.

2.

mirDIP 4.1-integrative database of human microRNA target predictions.

Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I.

Nucleic Acids Res. 2018 Jan 4;46(D1):D360-D370. doi: 10.1093/nar/gkx1144.

3.

Quantitative Proteomic Approach for MicroRNA Target Prediction Based on 18O/16O Labeling.

Ma X, Zhu Y, Huang Y, Tegeler T, Gao SJ, Zhang J.

Cancer Inform. 2016 Dec 8;14(Suppl 5):163-173. eCollection 2015.

4.
5.

MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation.

Wang HW, Su SH, Wang YL, Chang ST, Liao KH, Lo HH, Chiu YL, Hsieh TH, Huang TS, Lin CS, Cheng SM, Cheng CC.

PLoS One. 2016 Jan 22;11(1):e0147067. doi: 10.1371/journal.pone.0147067. eCollection 2016.

6.

Non-coding yet non-trivial: a review on the computational genomics of lincRNAs.

Ching T, Masaki J, Weirather J, Garmire LX.

BioData Min. 2015 Dec 22;8:44. doi: 10.1186/s13040-015-0075-z. eCollection 2015. Review.

7.

Predicting effective microRNA target sites in mammalian mRNAs.

Agarwal V, Bell GW, Nam JW, Bartel DP.

Elife. 2015 Aug 12;4. doi: 10.7554/eLife.05005.

8.

DNA microarray integromics analysis platform.

Waller T, Gubała T, Sarapata K, Piwowar M, Jurkowski W.

BioData Min. 2015 Jun 25;8:18. doi: 10.1186/s13040-015-0052-6. eCollection 2015.

9.

MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets.

Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z.

Sci Rep. 2015 Jan 23;5:8004. doi: 10.1038/srep08004.

10.

Identification of miR-145 targets through an integrated omics analysis.

Huang TC, Renuse S, Pinto S, Kumar P, Yang Y, Chaerkady R, Godsey B, Mendell JT, Halushka MK, Civin CI, Marchionni L, Pandey A.

Mol Biosyst. 2015 Jan;11(1):197-207. doi: 10.1039/c4mb00585f. Epub 2014 Oct 30.

11.

mirMark: a site-level and UTR-level classifier for miRNA target prediction.

Menor M, Ching T, Zhu X, Garmire D, Garmire LX.

Genome Biol. 2014;15(10):500.

12.
13.

TraceRNA: a web application for competing endogenous RNA exploration.

Flores M, Chen Y, Huang Y.

Circ Cardiovasc Genet. 2014 Aug;7(4):548-57. doi: 10.1161/CIRCGENETICS.113.000125. No abstract available.

14.

Identifying microRNA targets in different gene regions.

Xu W, San Lucas A, Wang Z, Liu Y.

BMC Bioinformatics. 2014;15 Suppl 7:S4. doi: 10.1186/1471-2105-15-S7-S4. Epub 2014 May 28.

15.

Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease.

Wang HW, Lo HH, Chiu YL, Chang SJ, Huang PH, Liao KH, Tasi CF, Wu CH, Tsai TN, Cheng CC, Cheng SM.

PLoS One. 2014 May 27;9(5):e98070. doi: 10.1371/journal.pone.0098070. eCollection 2014.

16.

Transcriptional override: a regulatory network model of indirect responses to modulations in microRNA expression.

Hill CG, Matyunina LV, Walker D, Benigno BB, McDonald JF.

BMC Syst Biol. 2014 Mar 25;8:36. doi: 10.1186/1752-0509-8-36.

17.

Common features of microRNA target prediction tools.

Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB.

Front Genet. 2014 Feb 18;5:23. doi: 10.3389/fgene.2014.00023. eCollection 2014. Review.

18.

KSHV microRNAs mediate cellular transformation and tumorigenesis by redundantly targeting cell growth and survival pathways.

Moody R, Zhu Y, Huang Y, Cui X, Jones T, Bedolla R, Lei X, Bai Z, Gao SJ.

PLoS Pathog. 2013;9(12):e1003857. doi: 10.1371/journal.ppat.1003857. Epub 2013 Dec 26. Erratum in: PLoS Pathog. 2014 Jan;10(1). doi:10.1371/annotation/582f0298-9999-46ea-be7e-6718608b11c5.

19.

Developing microRNA screening as a functional genomics tool for disease research.

Lemons D, Maurya MR, Subramaniam S, Mercola M.

Front Physiol. 2013 Aug 27;4:223. doi: 10.3389/fphys.2013.00223. eCollection 2013.

20.

Gene regulation, modulation, and their applications in gene expression data analysis.

Flores M, Hsiao TH, Chiu YC, Chuang EY, Huang Y, Chen Y.

Adv Bioinformatics. 2013;2013:360678. doi: 10.1155/2013/360678. Epub 2013 Mar 13.

Supplemental Content

Support Center