Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 28

1.

Systems Biomedicine of Rabies Delineates the Affected Signaling Pathways.

Azimzadeh Jamalkandi S, Mozhgani SH, Gholami Pourbadie H, Mirzaie M, Noorbakhsh F, Vaziri B, Gholami A, Ansari-Pour N, Jafari M.

Front Microbiol. 2016 Nov 7;7:1688. eCollection 2016.

2.

Keeping it in check: chronic viral infection and antiviral immunity in the brain.

Miller KD, Schnell MJ, Rall GF.

Nat Rev Neurosci. 2016 Dec;17(12):766-776. doi: 10.1038/nrn.2016.140. Epub 2016 Nov 4. Review.

PMID:
27811921
3.

Subversion of the Immune Response by Rabies Virus.

Scott TP, Nel LH.

Viruses. 2016 Aug 19;8(8). pii: E231. doi: 10.3390/v8080231. Review.

4.

Genome-Wide Transcriptional Profiling Reveals Two Distinct Outcomes in Central Nervous System Infections of Rabies Virus.

Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y.

Front Microbiol. 2016 May 19;7:751. doi: 10.3389/fmicb.2016.00751. eCollection 2016.

5.

The importance of immune evasion in the pathogenesis of rabies virus.

Ito N, Moseley GW, Sugiyama M.

J Vet Med Sci. 2016 Aug 1;78(7):1089-98. doi: 10.1292/jvms.16-0092. Epub 2016 Apr 2. Review.

6.

Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1.

Kurhade C, Zegenhagen L, Weber E, Nair S, Michaelsen-Preusse K, Spanier J, Gekara NO, Kröger A, Överby AK.

J Neuroinflammation. 2016 Jan 27;13:22. doi: 10.1186/s12974-016-0487-9.

7.

Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice.

Appolinário CM, Allendorf SD, Peres MG, Ribeiro BD, Fonseca CR, Vicente AF, Antunes JM, Megid J.

Am J Trop Med Hyg. 2016 Feb;94(2):378-83. doi: 10.4269/ajtmh.15-0361. Epub 2015 Dec 28.

8.

Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain.

Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, Conzelmann KK, Michiels T, Staeheli P.

J Virol. 2015 Dec 9;90(4):2031-8. doi: 10.1128/JVI.02979-15.

9.

Critical Role of K1685 and K1829 in the Large Protein of Rabies Virus in Viral Pathogenicity and Immune Evasion.

Tian D, Luo Z, Zhou M, Li M, Yu L, Wang C, Yuan J, Li F, Tian B, Sui B, Chen H, Fu ZF, Zhao L.

J Virol. 2015 Oct 14;90(1):232-44. doi: 10.1128/JVI.02050-15.

10.

Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses.

Blondel D, Maarifi G, Nisole S, Chelbi-Alix MK.

Viruses. 2015 Jul 7;7(7):3675-702. doi: 10.3390/v7072794. Review.

11.

Innate immune interactions within the central nervous system modulate pathogenesis of viral infections.

Nair S, Diamond MS.

Curr Opin Immunol. 2015 Oct;36:47-53. doi: 10.1016/j.coi.2015.06.011. Epub 2015 Jul 8. Review.

12.

The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the de novo-synthesized leader RNA.

Yang Y, Huang Y, Gnanadurai CW, Cao S, Liu X, Cui M, Fu ZF.

J Virol. 2015 Feb;89(4):2157-69. doi: 10.1128/JVI.02092-14. Epub 2014 Dec 3.

13.

Early activation of teleost B cells in response to rhabdovirus infection.

Abós B, Castro R, González Granja A, Havixbeck JJ, Barreda DR, Tafalla C.

J Virol. 2015 Feb;89(3):1768-80. doi: 10.1128/JVI.03080-14. Epub 2014 Nov 19.

14.

In vivo ligands of MDA5 and RIG-I in measles virus-infected cells.

Runge S, Sparrer KM, Lässig C, Hembach K, Baum A, García-Sastre A, Söding J, Conzelmann KK, Hopfner KP.

PLoS Pathog. 2014 Apr 17;10(4):e1004081. doi: 10.1371/journal.ppat.1004081. eCollection 2014 Apr.

15.

Virus-heat shock protein interaction and a novel axis for innate antiviral immunity.

Kim MY, Oglesbee M.

Cells. 2012 Sep 11;1(3):646-66. doi: 10.3390/cells1030646.

16.

Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system.

Lazear HM, Pinto AK, Ramos HJ, Vick SC, Shrestha B, Suthar MS, Gale M Jr, Diamond MS.

J Virol. 2013 Nov;87(21):11401-15. doi: 10.1128/JVI.01403-13. Epub 2013 Aug 21.

17.

B cell infection and activation by rabies virus-based vaccines.

Lytle AG, Norton JE Jr, Dorfmeier CL, Shen S, McGettigan JP.

J Virol. 2013 Aug;87(16):9097-110. doi: 10.1128/JVI.00800-13. Epub 2013 Jun 12.

18.

Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1β release in murine dendritic cells.

Lawrence TM, Hudacek AW, de Zoete MR, Flavell RA, Schnell MJ.

J Virol. 2013 May;87(10):5848-57. doi: 10.1128/JVI.00203-13. Epub 2013 Mar 13.

19.

IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling.

Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, Vick SC, Clepper L, Thackray L, Brassil MM, Virgin HW, Nikolich-Zugich J, Moses AV, Gale M Jr, Früh K, Diamond MS.

PLoS Pathog. 2013 Jan;9(1):e1003118. doi: 10.1371/journal.ppat.1003118. Epub 2013 Jan 3. Erratum in: PLoS Pathog. 2013 May;9(5). :10.1371/annotation/4de7ddfd-52df-4f87-8ca4-d48afe646ca8.

20.

RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection.

Luco S, Delmas O, Vidalain PO, Tangy F, Weil R, Bourhy H.

PLoS Pathog. 2012;8(12):e1003060. doi: 10.1371/journal.ppat.1003060. Epub 2012 Dec 13.

Supplemental Content

Support Center