Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances.

Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, Spitz F.

Dev Cell. 2016 Dec 5;39(5):529-543. doi: 10.1016/j.devcel.2016.10.015.

2.

Genetic and Epigenetic Regulation of TOX3 Expression in Breast Cancer.

Han YJ, Zhang J, Zheng Y, Huo D, Olopade OI.

PLoS One. 2016 Nov 2;11(11):e0165559. doi: 10.1371/journal.pone.0165559.

3.

Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer.

Grampp S, Platt JL, Lauer V, Salama R, Kranz F, Neumann VK, Wach S, Stöhr C, Hartmann A, Eckardt KU, Ratcliffe PJ, Mole DR, Schödel J.

Nat Commun. 2016 Oct 24;7:13183. doi: 10.1038/ncomms13183.

4.

Prostate Cancer Genetics: A Review.

Wallis CJ, Nam RK.

EJIFCC. 2015 Mar 10;26(2):79-91.

5.

Enhancer deregulation in cancer and other diseases.

Herz HM.

Bioessays. 2016 Oct;38(10):1003-15. doi: 10.1002/bies.201600106.

PMID:
27570183
6.

IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation.

Oktay Y, Ülgen E, Can Ö, Akyerli CB, Yüksel Ş, Erdemgil Y, Durası IM, Henegariu OI, Nanni EP, Selevsek N, Grossmann J, Erson-Omay EZ, Bai H, Gupta M, Lee W, Turcan Ş, Özpınar A, Huse JT, Sav MA, Flanagan A, Günel M, Sezerman OU, Yakıcıer MC, Pamir MN, Özduman K.

Sci Rep. 2016 Jun 10;6:27569. doi: 10.1038/srep27569.

7.
8.
9.

An examination of clinical differences between carriers and non-carriers of chromosome 8q24 risk alleles in a New Zealand Caucasian population with prostate cancer.

Bishop KS, Han DY, Karunasinghe N, Goudie M, Masters JG, Ferguson LR.

PeerJ. 2016 Mar 1;4:e1731. doi: 10.7717/peerj.1731.

10.
11.

"Reverse Genomics" Predicts Function of Human Conserved Noncoding Elements.

Marcovitz A, Jia R, Bejerano G.

Mol Biol Evol. 2016 May;33(5):1358-69. doi: 10.1093/molbev/msw001.

PMID:
26744417
12.

PVT1 Exon 9: A Potential Biomarker of Aggressive Prostate Cancer?

Ilboudo A, Chouhan J, McNeil BK, Osborne JR, Ogunwobi OO.

Int J Environ Res Public Health. 2015 Dec 22;13(1):ijerph13010012. doi: 10.3390/ijerph13010012.

13.

Variants on 8q24 and prostate cancer risk in Chinese population: a meta-analysis.

Ren XQ, Zhang JG, Xin SY, Cheng T, Li L, Ren WH.

Int J Clin Exp Med. 2015 Jun 15;8(6):8561-70.

14.

Genetic architecture of colorectal cancer.

Peters U, Bien S, Zubair N.

Gut. 2015 Oct;64(10):1623-36. doi: 10.1136/gutjnl-2013-306705. Review.

15.

Association of three 8q24 polymorphisms with prostate cancer susceptibility: evidence from a meta-analysis with 50,854 subjects.

Li Q, Liu X, Hua RX, Wang F, An H, Zhang W, Zhu JH.

Sci Rep. 2015 Jul 10;5:12069. doi: 10.1038/srep12069.

16.

Enhancer variants: evaluating functions in common disease.

Corradin O, Scacheri PC.

Genome Med. 2014 Oct 28;6(10):85. doi: 10.1186/s13073-014-0085-3.

17.

On the identification of potential regulatory variants within genome wide association candidate SNP sets.

Chen CY, Chang IS, Hsiung CA, Wasserman WW.

BMC Med Genomics. 2014 Jun 11;7:34. doi: 10.1186/1755-8794-7-34.

18.

Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types.

Li Q, Stram A, Chen C, Kar S, Gayther S, Pharoah P, Haiman C, Stranger B, Kraft P, Freedman ML.

Hum Mol Genet. 2014 Oct 1;23(19):5294-302. doi: 10.1093/hmg/ddu228.

19.

A comprehensive resequence-analysis of 250 kb region of 8q24.21 in men of African ancestry.

Chung CC, Hsing AW, Edward Yeboah, Biritwum R, Tettey Y, Adjei A, Cook MB, De Marzo A, Netto G, Tay E, Boland JF, Yeager M, Chanock SJ.

Prostate. 2014 May;74(6):579-89.

20.

Genetic variations in colorectal cancer risk and clinical outcome.

Zhang K, Civan J, Mukherjee S, Patel F, Yang H.

World J Gastroenterol. 2014 Apr 21;20(15):4167-77. doi: 10.3748/wjg.v20.i15.4167. Review.

Supplemental Content

Support Center