Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

The shifting landscape of KATP channelopathies and the need for 'sharper' therapeutics.

Kharade SV, Nichols C, Denton JS.

Future Med Chem. 2016 May;8(7):789-802. doi: 10.4155/fmc-2016-0005.

PMID:
27161588
2.

Psychiatric morbidity in children with KCNJ11 neonatal diabetes.

Bowman P, Broadbridge E, Knight BA, Pettit L, Flanagan SE, Reville M, Tonks J, Shepherd MH, Ford TJ, Hattersley AT.

Diabet Med. 2016 Oct;33(10):1387-91. doi: 10.1111/dme.13135.

3.

Systemic Administration of Glibenclamide Fails to Achieve Therapeutic Levels in the Brain and Cerebrospinal Fluid of Rodents.

Lahmann C, Kramer HB, Ashcroft FM.

PLoS One. 2015 Jul 30;10(7):e0134476. doi: 10.1371/journal.pone.0134476.

4.

Wheel running in the wild.

Meijer JH, Robbers Y.

Proc Biol Sci. 2014 Jul 7;281(1786). pii: 20140210. doi: 10.1098/rspb.2014.0210.

5.

Genetics and pathophysiology of neonatal diabetes mellitus.

Naylor RN, Greeley SA, Bell GI, Philipson LH.

J Diabetes Investig. 2011 Jun 5;2(3):158-69. doi: 10.1111/j.2040-1124.2011.00106.x. Review.

6.

Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes.

Zhang Q, Ramracheya R, Lahmann C, Tarasov A, Bengtsson M, Braha O, Braun M, Brereton M, Collins S, Galvanovskis J, Gonzalez A, Groschner LN, Rorsman NJ, Salehi A, Travers ME, Walker JN, Gloyn AL, Gribble F, Johnson PR, Reimann F, Ashcroft FM, Rorsman P.

Cell Metab. 2013 Dec 3;18(6):871-82. doi: 10.1016/j.cmet.2013.10.014.

7.

Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options.

Rubio-Cabezas O, Ellard S.

Horm Res Paediatr. 2013;80(3):137-46. doi: 10.1159/000354219. Review.

8.

Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle.

Li A, Knutsen RH, Zhang H, Osei-Owusu P, Moreno-Dominguez A, Harter TM, Uchida K, Remedi MS, Dietrich HH, Bernal-Mizrachi C, Blumer KJ, Mecham RP, Koster JC, Nichols CG.

J Am Heart Assoc. 2013 Aug 23;2(4):e000365. doi: 10.1161/JAHA.113.000365.

9.

A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1.

Shimomura K, Tusa M, Iberl M, Brereton MF, Kaizik S, Proks P, Lahmann C, Yaluri N, Modi S, Huopio H, Ustinov J, Otonkoski T, Laakso M, Ashcroft FM.

Diabetes. 2013 Nov;62(11):3797-806. doi: 10.2337/db12-1611.

10.

Gain-of-function mutations in the K(ATP) channel (KCNJ11) impair coordinated hand-eye tracking.

McTaggart JS, Jenkinson N, Brittain JS, Greeley SA, Hattersley AT, Ashcroft FM.

PLoS One. 2013 Apr 23;8(4):e62646. doi: 10.1371/journal.pone.0062646.

11.

Switching to sulphonylureas in children with iDEND syndrome caused by KCNJ11 mutations results in improved cerebellar perfusion.

Fendler W, Pietrzak I, Brereton MF, Lahmann C, Gadzicki M, Bienkiewicz M, Drozdz I, Borowiec M, Malecki MT, Ashcroft FM, Mlynarski WM.

Diabetes Care. 2013 Aug;36(8):2311-6. doi: 10.2337/dc12-2166.

13.

Promoter DNA methylation regulates murine SUR1 (Abcc8) and SUR2 (Abcc9) expression in HL-1 cardiomyocytes.

Fatima N, Schooley JF Jr, Claycomb WC, Flagg TP.

PLoS One. 2012;7(7):e41533. doi: 10.1371/journal.pone.0041533.

14.

Glyburide ameliorates motor coordination and glucose homeostasis in a child with diabetes associated with the KCNJ11/S225T, del226-232 mutation.

Battaglia D, Lin YW, Brogna C, Crinò A, Grasso V, Mozzi AF, Russo L, Spera S, Colombo C, Ricci S, Nichols CG, Mercuri E, Barbetti F.

Pediatr Diabetes. 2012 Dec;13(8):656-60. doi: 10.1111/j.1399-5448.2012.00874.x.

15.

Mice expressing a human K(ATP) channel mutation have altered channel ATP sensitivity but no cardiac abnormalities.

Clark R, Männikkö R, Stuckey DJ, Iberl M, Clarke K, Ashcroft FM.

Diabetologia. 2012 Apr;55(4):1195-204. doi: 10.1007/s00125-011-2428-6.

16.

A systems view of genetics in chronic kidney disease.

Keller BJ, Martini S, Sedor JR, Kretzler M.

Kidney Int. 2012 Jan;81(1):14-21. doi: 10.1038/ki.2011.359. Review.

17.

Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment.

Greeley SA, Naylor RN, Philipson LH, Bell GI.

Curr Diab Rep. 2011 Dec;11(6):519-32. doi: 10.1007/s11892-011-0234-7. Review.

18.

Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders.

Quan Y, Barszczyk A, Feng ZP, Sun HS.

Acta Pharmacol Sin. 2011 Jun;32(6):765-80. doi: 10.1038/aps.2011.57. Review.

19.

A conserved tryptophan at the membrane-water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated.

Männikkö R, Stansfeld PJ, Ashcroft AS, Hattersley AT, Sansom MS, Ellard S, Ashcroft FM.

J Physiol. 2011 Jul 1;589(Pt 13):3071-83. doi: 10.1113/jphysiol.2011.209700.

20.

Mouse models and the interpretation of human GWAS in type 2 diabetes and obesity.

Cox RD, Church CD.

Dis Model Mech. 2011 Mar;4(2):155-64. doi: 10.1242/dmm.000414.

Supplemental Content

Support Center