Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 15

1.

Signal Normalization Reduces Image Appearance Disparity Among Multiple Optical Coherence Tomography Devices.

Chen CL, Ishikawa H, Wollstein G, Bilonick RA, Kagemann L, Schuman JS.

Transl Vis Sci Technol. 2017 Feb 28;6(1):13. doi: 10.1167/6.1.13. eCollection 2017 Feb.

2.

Optical coherence tomography based angiography [Invited].

Chen CL, Wang RK.

Biomed Opt Express. 2017 Jan 24;8(2):1056-1082. doi: 10.1364/BOE.8.001056. eCollection 2017 Feb 1. Review.

3.

Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study.

Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, Schuman JS, Sehi M, Chopra V, Huang D; Advanced Imaging for Glaucoma Study Group.

Am J Ophthalmol. 2016 Dec;172:94-103. doi: 10.1016/j.ajo.2016.09.015. Epub 2016 Sep 17.

PMID:
27651070
4.

Analysis of Retinal Layer Thicknesses and Their Clinical Correlation in Patients with Traumatic Optic Neuropathy.

Lee JY, Cho K, Park KA, Oh SY.

PLoS One. 2016 Jun 13;11(6):e0157388. doi: 10.1371/journal.pone.0157388. eCollection 2016.

5.

Serum levels of lipid metabolites in age-related macular degeneration.

Orban T, Johnson WM, Dong Z, Maeda T, Maeda A, Sakai T, Tsuneoka H, Mieyal JJ, Palczewski K.

FASEB J. 2015 Nov;29(11):4579-88. doi: 10.1096/fj.15-275289. Epub 2015 Jul 17.

6.

The cellular origins of the outer retinal bands in optical coherence tomography images.

Jonnal RS, Kocaoglu OP, Zawadzki RJ, Lee SH, Werner JS, Miller DT.

Invest Ophthalmol Vis Sci. 2014 Oct 16;55(12):7904-18. doi: 10.1167/iovs.14-14907.

7.

Spectral-domain optical coherence tomography evaluation of postoperative cystoid macular oedema following phacoemulsification with intraoperative complication.

Khaw KW, Lam HH, Khang TF, Wan Ab Kadir AJ, Subrayan V.

BMC Ophthalmol. 2014 Feb 17;14:16. doi: 10.1186/1471-2415-14-16.

8.

Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration.

Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z, Sawada O, Maeda T, Maeda A, Palczewski K.

J Clin Invest. 2013 Dec;123(12):5119-34. doi: 10.1172/JCI69076. Epub 2013 Nov 15.

9.

Signal normalization reduces systematic measurement differences between spectral-domain optical coherence tomography devices.

Chen CL, Ishikawa H, Ling Y, Wollstein G, Bilonick RA, Xu J, Fujimoto JG, Sigal IA, Kagemann L, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 Nov 5;54(12):7317-22. doi: 10.1167/iovs.13-12806.

10.

Individual A-scan signal normalization between two spectral domain optical coherence tomography devices.

Chen CL, Ishikawa H, Wollstein G, Ling Y, Bilonick RA, Kagemann L, Sigal IA, Schuman JS.

Invest Ophthalmol Vis Sci. 2013 May 17;54(5):3463-71. doi: 10.1167/iovs.12-11484.

11.

Molecular imaging of retinal disease.

Capozzi ME, Gordon AY, Penn JS, Jayagopal A.

J Ocul Pharmacol Ther. 2013 Mar;29(2):275-86. doi: 10.1089/jop.2012.0279. Epub 2013 Feb 19. Review.

12.

Three-dimensional spectral-domain optical coherence tomography data analysis for glaucoma detection.

Xu J, Ishikawa H, Wollstein G, Bilonick RA, Folio LS, Nadler Z, Kagemann L, Schuman JS.

PLoS One. 2013;8(2):e55476. doi: 10.1371/journal.pone.0055476. Epub 2013 Feb 11.

13.

Glaucomatous damage of the macula.

Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R.

Prog Retin Eye Res. 2013 Jan;32:1-21. doi: 10.1016/j.preteyeres.2012.08.003. Epub 2012 Sep 17. Review.

14.

The use of optical coherence tomography in intraoperative ophthalmic imaging.

Hahn P, Migacz J, O'Connell R, Maldonado RS, Izatt JA, Toth CA.

Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl:S85-94. doi: 10.3928/15428877-20110627-08. Review.

15.

The role of spectral-domain OCT in the diagnosis and management of neovascular age-related macular degeneration.

Regatieri CV, Branchini L, Duker JS.

Ophthalmic Surg Lasers Imaging. 2011 Jul;42 Suppl:S56-66. doi: 10.3928/15428877-20110627-05. Review.

Supplemental Content

Support Center