Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Myeloproliferative neoplasm stem cells.

Mead AJ, Mullally A.

Blood. 2017 Mar 23;129(12):1607-1616. doi: 10.1182/blood-2016-10-696005. Epub 2017 Feb 3. Review.

PMID:
28159736
2.

Quantitative histological image analyses of reticulin fibers in a myelofibrotic mouse.

Lucero HA, Patterson S, Matsuura S, Ravid K.

J Biol Methods. 2016;3(4). pii: e60. doi: 10.14440/jbm.2016.152. Epub 2016 Nov 22.

3.

Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms.

Grinfeld J, Nangalia J, Green AR.

Haematologica. 2017 Jan;102(1):7-17. doi: 10.3324/haematol.2014.113845. Epub 2016 Dec 1. Review.

4.

JAK2V617F-mutant vascular niche contributes to JAK2V617F clonal expansion in myeloproliferative neoplasms.

Lin CH, Kaushansky K, Zhan H.

Blood Cells Mol Dis. 2016 Nov;62:42-48. doi: 10.1016/j.bcmd.2016.09.004. Epub 2016 Nov 4.

PMID:
27865175
5.

Alox5 Blockade Eradicates JAK2V617F-Induced Polycythemia Vera in Mice.

Chen Y, Shan Y, Lu M, DeSouza N, Guo Z, Hoffman R, Liang A, Li S.

Cancer Res. 2017 Jan 1;77(1):164-174. doi: 10.1158/0008-5472.CAN-15-2933. Epub 2016 Oct 26.

PMID:
27784744
6.

Combination of JAK2 and HSP90 inhibitors: an effective therapeutic option in drug-resistant chronic myelogenous leukemia.

Chakraborty SN, Leng X, Perazzona B, Sun X, Lin YH, Arlinghaus RB.

Genes Cancer. 2016 May;7(5-6):201-208. doi: 10.18632/genesandcancer.111.

7.

JAK2 V617F stimulates proliferation of erythropoietin-dependent erythroid progenitors and delays their differentiation by activating Stat1 and other nonerythroid signaling pathways.

Shi J, Yuan B, Hu W, Lodish H.

Exp Hematol. 2016 Nov;44(11):1044-1058.e5. doi: 10.1016/j.exphem.2016.07.010. Epub 2016 Jul 26.

PMID:
27473563
8.

The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition.

Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, Mochizuki-Kashio M, Harada H, Shimoda K, Iwama A.

J Exp Med. 2016 Jul 25;213(8):1459-77. doi: 10.1084/jem.20151121. Epub 2016 Jul 11.

9.

Quantitative analyses of myelofibrosis by determining hydroxyproline.

Zhao W, Ho WT, Zhao ZJ.

Stem Cell Investig. 2015 Jan 26;2:2. doi: 10.3978/j.issn.2306-9759.2015.01.02. eCollection 2015.

10.

The polycythemia vera stem cell.

Spivak JL.

Leuk Suppl. 2014 Dec;3(Suppl 1):S23-4. doi: 10.1038/leusup.2014.13. Epub 2014 Dec 17. No abstract available.

11.

Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera.

Casu C, Oikonomidou PR, Chen H, Nandi V, Ginzburg Y, Prasad P, Fleming RE, Shah YM, Valore EV, Nemeth E, Ganz T, MacDonald B, Rivella S.

Blood. 2016 Jul 14;128(2):265-76. doi: 10.1182/blood-2015-10-676742. Epub 2016 May 6.

12.

JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation.

Zhan H, Ma Y, Lin CH, Kaushansky K.

Leukemia. 2016 Dec;30(12):2332-2341. doi: 10.1038/leu.2016.114. Epub 2016 May 2.

13.

Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm.

Yang Y, Akada H, Nath D, Hutchison RE, Mohi G.

Blood. 2016 Jun 30;127(26):3410-23. doi: 10.1182/blood-2015-11-679431. Epub 2016 Apr 14.

14.

Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation.

Mascarenhas MI, Bacon WA, Kapeni C, Fitch SR, Kimber G, Cheng SW, Li J, Green AR, Ottersbach K.

Blood. 2016 May 12;127(19):2298-309. doi: 10.1182/blood-2015-08-664631. Epub 2016 Feb 10.

15.

RECQL5 Suppresses Oncogenic JAK2-Induced Replication Stress and Genomic Instability.

Chen E, Ahn JS, Sykes DB, Breyfogle LJ, Godfrey AL, Nangalia J, Ko A, DeAngelo DJ, Green AR, Mullally A.

Cell Rep. 2015 Dec 22;13(11):2345-52. doi: 10.1016/j.celrep.2015.11.037. Epub 2015 Dec 10.

16.

Polycythemia is associated with bone loss and reduced osteoblast activity in mice.

Oikonomidou PR, Casu C, Yang Z, Crielaard B, Shim JH, Rivella S, Vogiatzi MG.

Osteoporos Int. 2016 Apr;27(4):1559-68. doi: 10.1007/s00198-015-3412-7. Epub 2015 Dec 9.

17.

Jak2V617F driven myeloproliferative neoplasm occurs independently of interleukin-3 receptor beta common signaling.

Vu T, Austin R, Kuhn CP, Bruedigam C, Song A, Guignes S, Jacquelin S, Ramshaw HS, Hill GR, Lopez AF, Lane SW.

Haematologica. 2016 Mar;101(3):e77-80. doi: 10.3324/haematol.2015.136705. Epub 2015 Nov 20. No abstract available.

18.

Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition.

Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, Breyfogle LJ, Schultz R, Gilles L, Koppikar P, Abdel-Wahab O, Pardanani A, Stein B, Gurbuxani S, Mullally A, Levine RL, Tefferi A, Crispino JD.

Nat Med. 2015 Dec;21(12):1473-80. doi: 10.1038/nm.3995. Epub 2015 Nov 16.

19.

The Hen or the Egg: Inflammatory Aspects of Murine MPN Models.

Jutzi JS, Pahl HL.

Mediators Inflamm. 2015;2015:101987. doi: 10.1155/2015/101987. Epub 2015 Oct 12. Review.

20.

Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells.

Guglielmelli P, Bisognin A, Saccoman C, Mannarelli C, Coppe A, Vannucchi AM, Bortoluzzi S.

PLoS One. 2015 Oct 15;10(10):e0140445. doi: 10.1371/journal.pone.0140445. eCollection 2015.

Supplemental Content

Support Center