Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis.

Lam HC, Baglini CV, Lope AL, Parkhitko AA, Liu HJ, Alesi N, Malinowska IA, Ebrahimi-Fakhari D, Saffari A, Yu JJ, Pereira A, Khabibullin D, Ogorek B, Nijmeh J, Kavanagh T, Handen A, Chan SY, Asara JM, Oldham WM, Diaz-Meco MT, Moscat J, Sahin M, Priolo C, Henske EP.

Cancer Res. 2017 Jun 15;77(12):3255-3267. doi: 10.1158/0008-5472.CAN-16-2458. Epub 2017 May 16.

PMID:
28512249
2.

The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility.

Shin CS, Mishra P, Watrous JD, Carelli V, D'Aurelio M, Jain M, Chan DC.

Nat Commun. 2017 Apr 21;8:15074. doi: 10.1038/ncomms15074.

3.

ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway.

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M.

Mol Cancer. 2017 Apr 13;16(1):79. doi: 10.1186/s12943-017-0648-1. Review.

4.

Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors.

Iurlaro R, Püschel F, León-Annicchiarico CL, O'Connor H, Martin SJ, Palou-Gramón D, Lucendo E, Muñoz-Pinedo C.

Mol Cell Biol. 2017 May 2;37(10). pii: e00479-16. doi: 10.1128/MCB.00479-16. Print 2017 May 15.

5.

mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation.

Villar VH, Nguyen TL, Delcroix V, Terés S, Bouchecareilh M, Salin B, Bodineau C, Vacher P, Priault M, Soubeyran P, Durán RV.

Nat Commun. 2017 Jan 23;8:14124. doi: 10.1038/ncomms14124.

6.

TSC loss distorts DNA replication programme and sensitises cells to genotoxic stress.

Pai GM, Zielinski A, Koalick D, Ludwig K, Wang ZQ, Borgmann K, Pospiech H, Rubio I.

Oncotarget. 2016 Dec 20;7(51):85365-85380. doi: 10.18632/oncotarget.13378.

7.

Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress.

Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo F, Li X, Wang S.

Am J Cancer Res. 2016 Oct 1;6(10):2289-2298. eCollection 2016.

8.

AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis.

Chaube B, Malvi P, Singh SV, Mohammad N, Viollet B, Bhat MK.

Cell Death Discov. 2015 Dec 21;1:15063. doi: 10.1038/cddiscovery.2015.63. eCollection 2015.

9.

Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition.

Jeong SM, Hwang S, Park K, Yang S, Seong RH.

Sci Rep. 2016 Aug 1;6:30767. doi: 10.1038/srep30767.

10.

mTORC1-Driven Tumor Cells Are Highly Sensitive to Therapeutic Targeting by Antagonists of Oxidative Stress.

Li J, Shin S, Sun Y, Yoon SO, Li C, Zhang E, Yu J, Zhang J, Blenis J.

Cancer Res. 2016 Aug 15;76(16):4816-27. doi: 10.1158/0008-5472.CAN-15-2629. Epub 2016 May 17.

11.

Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance.

Romero-Garcia S, Moreno-Altamirano MM, Prado-Garcia H, Sánchez-García FJ.

Front Immunol. 2016 Feb 16;7:52. doi: 10.3389/fimmu.2016.00052. eCollection 2016. Review.

12.

Lysosomal recruitment of TSC2 is a universal response to cellular stress.

Demetriades C, Plescher M, Teleman AA.

Nat Commun. 2016 Feb 12;7:10662. doi: 10.1038/ncomms10662.

13.

Elongation factor 2 kinase promotes cell survival by inhibiting protein synthesis without inducing autophagy.

Moore CE, Wang X, Xie J, Pickford J, Barron J, Regufe da Mota S, Versele M, Proud CG.

Cell Signal. 2016 Apr;28(4):284-93. doi: 10.1016/j.cellsig.2016.01.005. Epub 2016 Jan 18.

14.

AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells.

Chaube B, Bhat MK.

Cell Death Dis. 2016 Jan 14;7:e2044. doi: 10.1038/cddis.2015.404. No abstract available.

15.

Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer.

Dasgupta B, Chhipa RR.

Trends Pharmacol Sci. 2016 Mar;37(3):192-206. doi: 10.1016/j.tips.2015.11.007. Epub 2015 Dec 20. Review.

16.

Glutaminolysis as a target for cancer therapy.

Jin L, Alesi GN, Kang S.

Oncogene. 2016 Jul 14;35(28):3619-25. doi: 10.1038/onc.2015.447. Epub 2015 Nov 23. Review.

17.

Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth.

Schöckel L, Glasauer A, Basit F, Bitschar K, Truong H, Erdmann G, Algire C, Hägebarth A, Willems PH, Kopitz C, Koopman WJ, Héroult M.

Cancer Metab. 2015 Oct 20;3:11. doi: 10.1186/s40170-015-0138-0. eCollection 2015.

18.

PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth.

Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE, Gordon C, Liu WJ, DeBerardinis RJ, Sudderth J, Twaddel W, Boros LG, Shroyer KR, Duraisamy S, Drapkin R, Powers RS, Rohde JM, Boxer MB, Wong KK, Girnun GD.

Mol Cell. 2015 Nov 19;60(4):571-83. doi: 10.1016/j.molcel.2015.09.025. Epub 2015 Oct 17.

19.

Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone.

Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, Cantley LC, DeBerardinis RJ, Kimmelman AC, Lyssiotis CA, Boothman DA.

Cancer Metab. 2015 Oct 12;3:12. doi: 10.1186/s40170-015-0137-1. eCollection 2015.

20.

A clinically attainable dose of L-asparaginase targets glutamine addiction in lymphoid cell lines.

Sugimoto K, Suzuki HI, Fujimura T, Ono A, Kaga N, Isobe Y, Sasaki M, Taka H, Miyazono K, Komatsu N.

Cancer Sci. 2015 Nov;106(11):1534-43. doi: 10.1111/cas.12807. Epub 2015 Oct 16.

Supplemental Content

Support Center