Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.

G2385R and I2020T Mutations Increase LRRK2 GTPase Activity.

Ho DH, Jang J, Joe EH, Son I, Seo H, Seol W.

Biomed Res Int. 2016;2016:7917128. doi: 10.1155/2016/7917128. Epub 2016 May 25.

2.

Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease.

Rosenbusch KE, Kortholt A.

Parkinsons Dis. 2016;2016:7351985. doi: 10.1155/2016/7351985. Epub 2016 May 12. Review.

3.

Protective LRRK2 R1398H Variant Enhances GTPase and Wnt Signaling Activity.

Nixon-Abell J, Berwick DC, Grannó S, Spain VA, Blackstone C, Harvey K.

Front Mol Neurosci. 2016 Mar 8;9:18. doi: 10.3389/fnmol.2016.00018. eCollection 2016.

4.

Regulation of LRRK2 promoter activity and gene expression by Sp1.

Wang J, Song W.

Mol Brain. 2016 Mar 22;9:33. doi: 10.1186/s13041-016-0215-5.

5.

LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity.

Karuppagounder SS, Xiong Y, Lee Y, Lawless MC, Kim D, Nordquist E, Martin I, Ge P, Brahmachari S, Jhaldiyal A, Kumar M, Andrabi SA, Dawson TM, Dawson VL.

J Chem Neuroanat. 2016 Oct;76(Pt B):90-97. doi: 10.1016/j.jchemneu.2016.01.007. Epub 2016 Jan 22.

PMID:
26808467
6.

Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease.

Rivero-Ríos P, Madero-Pérez J, Fernández B, Hilfiker S.

Curr Neuropharmacol. 2016;14(3):238-49.

PMID:
26517050
7.

The Parkinson's Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway.

Imai Y, Kobayashi Y, Inoshita T, Meng H, Arano T, Uemura K, Asano T, Yoshimi K, Zhang CL, Matsumoto G, Ohtsuka T, Kageyama R, Kiyonari H, Shioi G, Nukina N, Hattori N, Takahashi R.

PLoS Genet. 2015 Sep 10;11(9):e1005503. doi: 10.1371/journal.pgen.1005503. eCollection 2015 Sep.

8.

Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease.

Gan-Or Z, Dion PA, Rouleau GA.

Autophagy. 2015;11(9):1443-57. doi: 10.1080/15548627.2015.1067364. Review.

9.

Cellular processes associated with LRRK2 function and dysfunction.

Wallings R, Manzoni C, Bandopadhyay R.

FEBS J. 2015 Aug;282(15):2806-26. doi: 10.1111/febs.13305. Epub 2015 May 9. Review.

10.

Synaptic dysfunction and septin protein family members in neurodegenerative diseases.

Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M.

Mol Neurodegener. 2015 Apr 3;10:16. doi: 10.1186/s13024-015-0013-z. Review.

11.

A novel GTP-binding inhibitor, FX2149, attenuates LRRK2 toxicity in Parkinson's disease models.

Li T, He X, Thomas JM, Yang D, Zhong S, Xue F, Smith WW.

PLoS One. 2015 Mar 27;10(3):e0122461. doi: 10.1371/journal.pone.0122461. eCollection 2015.

12.

Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein.

Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron JW, Spencer B, Kosberg K, Fields JA, Stafa K, Adame A, Lashuel H, Frydman J, Shen K, Masliah E, Gitler AD.

Neuron. 2015 Jan 7;85(1):76-87. doi: 10.1016/j.neuron.2014.11.027. Epub 2014 Dec 18. Erratum in: Neuron. 2015 Feb 4;85(3):657.

13.

LRRK2 pathobiology in Parkinson's disease.

Martin I, Kim JW, Dawson VL, Dawson TM.

J Neurochem. 2014 Dec;131(5):554-65. doi: 10.1111/jnc.12949. Epub 2014 Oct 10. Review.

14.

Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration.

Tsika E, Kannan M, Foo CS, Dikeman D, Glauser L, Gellhaar S, Galter D, Knott GW, Dawson TM, Dawson VL, Moore DJ.

Neurobiol Dis. 2014 Nov;71:345-58. doi: 10.1016/j.nbd.2014.08.027. Epub 2014 Aug 29.

15.

Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications.

Rudenko IN, Cookson MR.

Neurotherapeutics. 2014 Oct;11(4):738-50. doi: 10.1007/s13311-014-0284-z. Review.

16.

Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson's disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2).

Linhart R, Wong SA, Cao J, Tran M, Huynh A, Ardrey C, Park JM, Hsu C, Taha S, Peterson R, Shea S, Kurian J, Venderova K.

Mol Neurodegener. 2014 Jun 11;9:23. doi: 10.1186/1750-1326-9-23.

17.

LRRK2, a puzzling protein: insights into Parkinson's disease pathogenesis.

Esteves AR, Swerdlow RH, Cardoso SM.

Exp Neurol. 2014 Nov;261:206-16. doi: 10.1016/j.expneurol.2014.05.025. Epub 2014 Jun 4. Review.

18.

Mutant LRRK2 enhances glutamatergic synapse activity and evokes excitotoxic dendrite degeneration.

Plowey ED, Johnson JW, Steer E, Zhu W, Eisenberg DA, Valentino NM, Liu YJ, Chu CT.

Biochim Biophys Acta. 2014 Sep;1842(9):1596-603. doi: 10.1016/j.bbadis.2014.05.016. Epub 2014 May 27.

19.

Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease.

Martin I, Kim JW, Lee BD, Kang HC, Xu JC, Jia H, Stankowski J, Kim MS, Zhong J, Kumar M, Andrabi SA, Xiong Y, Dickson DW, Wszolek ZK, Pandey A, Dawson TM, Dawson VL.

Cell. 2014 Apr 10;157(2):472-85. doi: 10.1016/j.cell.2014.01.064.

20.

The Parkinson disease-linked LRRK2 protein mutation I2020T stabilizes an active state conformation leading to increased kinase activity.

Ray S, Bender S, Kang S, Lin R, Glicksman MA, Liu M.

J Biol Chem. 2014 May 9;289(19):13042-53. doi: 10.1074/jbc.M113.537811. Epub 2014 Apr 2.

Items per page

Supplemental Content

Write to the Help Desk