Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1.

Zhang B, Fu D, Xu Q, Cong X, Wu C, Zhong X, Ma Y, Lv Z, Chen F, Han L, Qian M, Chin YE, Lam EW, Chiao P, Sun Y.

Nat Commun. 2018 Apr 30;9(1):1723. doi: 10.1038/s41467-018-04010-4.

2.

Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.

Sasagawa Y, Danno H, Takada H, Ebisawa M, Tanaka K, Hayashi T, Kurisaki A, Nikaido I.

Genome Biol. 2018 Mar 9;19(1):29. doi: 10.1186/s13059-018-1407-3.

3.

ZSCAN4 is negatively regulated by the ubiquitin-proteasome system and the E3 ubiquitin ligase RNF20.

Portney BA, Khatri R, Meltzer WA, Mariano JM, Zalzman M.

Biochem Biophys Res Commun. 2018 Mar 25;498(1):72-78. doi: 10.1016/j.bbrc.2018.02.155. Epub 2018 Mar 2.

4.

How stem cells keep telomeres in check.

Li JSZ, Denchi EL.

Differentiation. 2018 Mar - Apr;100:21-25. doi: 10.1016/j.diff.2018.01.004. Epub 2018 Feb 2. Review.

PMID:
29413749
5.

Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51.

Lee EJ, Hwang I, Lee JY, Park JN, Kim KC, Kim GH, Kang CM, Kim I, Lee SY, Kim HS.

Mol Ther. 2018 Mar 7;26(3):845-859. doi: 10.1016/j.ymthe.2017.12.015. Epub 2017 Dec 19.

PMID:
29398486
6.

Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state.

Wang Y, Zhao C, Hou Z, Yang Y, Bi Y, Wang H, Zhang Y, Gao S.

Elife. 2018 Jan 30;7. pii: e29518. doi: 10.7554/eLife.29518.

7.

Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

Mahgoub M, Yasunaga JI, Iwami S, Nakaoka S, Koizumi Y, Shimura K, Matsuoka M.

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1269-E1278. doi: 10.1073/pnas.1715724115. Epub 2018 Jan 22.

8.

Asymmetricity Between Sister Cells of Pluripotent Stem Cells at the Onset of Differentiation.

Nakamura S, Maruyama A, Kondo Y, Kano A, De Sousa OM, Iwahashi M, Hexig B, Akaike T, Li J, Hayashi Y, Ohnuma K.

Stem Cells Dev. 2018 Mar 1;27(5):347-354. doi: 10.1089/scd.2017.0113. Epub 2018 Feb 21.

9.

Short-term retinoic acid treatment sustains pluripotency and suppresses differentiation of human induced pluripotent stem cells.

De Angelis MT, Parrotta EI, Santamaria G, Cuda G.

Cell Death Dis. 2018 Jan 5;9(1):6. doi: 10.1038/s41419-017-0028-1.

10.

A molecular roadmap for the emergence of early-embryonic-like cells in culture.

Rodriguez-Terrones D, Gaume X, Ishiuchi T, Weiss A, Kopp A, Kruse K, Penning A, Vaquerizas JM, Brino L, Torres-Padilla ME.

Nat Genet. 2018 Jan;50(1):106-119. doi: 10.1038/s41588-017-0016-5. Epub 2017 Dec 18.

PMID:
29255263
11.

Telomere chromatin establishment and its maintenance during mammalian development.

Tardat M, Déjardin J.

Chromosoma. 2018 Mar;127(1):3-18. doi: 10.1007/s00412-017-0656-3. Epub 2017 Dec 18. Review.

12.

Rif1 promotes a repressive chromatin state to safeguard against endogenous retrovirus activation.

Li P, Wang L, Bennett BD, Wang J, Li J, Qin Y, Takaku M, Wade PA, Wong J, Hu G.

Nucleic Acids Res. 2017 Dec 15;45(22):12723-12738. doi: 10.1093/nar/gkx884.

13.

An Endogenously Tagged Fluorescent Fusion Protein Library in Mouse Embryonic Stem Cells.

Harikumar A, Edupuganti RR, Sorek M, Azad GK, Markoulaki S, Sehnalová P, Legartová S, Bártová E, Farkash-Amar S, Jaenisch R, Alon U, Meshorer E.

Stem Cell Reports. 2017 Oct 10;9(4):1304-1314. doi: 10.1016/j.stemcr.2017.08.022. Epub 2017 Sep 28.

14.

Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells.

Dan J, Rousseau P, Hardikar S, Veland N, Wong J, Autexier C, Chen T.

Cell Rep. 2017 Aug 22;20(8):1936-1949. doi: 10.1016/j.celrep.2017.07.070.

15.

Microarray analyses of otospheres derived from the cochlea in the inner ear identify putative transcription factors that regulate the characteristics of otospheres.

Iki T, Tanaka M, Kitajiri SI, Kita T, Kawasaki Y, Mizukoshi A, Fujibuchi W, Nakagawa T, Nakahata T, Ito J, Omori K, Saito MK.

PLoS One. 2017 Jun 29;12(6):e0179901. doi: 10.1371/journal.pone.0179901. eCollection 2017.

16.

Next-generation mammalian genetics toward organism-level systems biology.

Susaki EA, Ukai H, Ueda HR.

NPJ Syst Biol Appl. 2017 Jun 5;3:15. doi: 10.1038/s41540-017-0015-2. eCollection 2017. Review.

17.

The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states.

Morgani S, Nichols J, Hadjantonakis AK.

BMC Dev Biol. 2017 Jun 13;17(1):7. doi: 10.1186/s12861-017-0150-4. Review.

18.

Activation of Lineage Regulators and Transposable Elements across a Pluripotent Spectrum.

Hackett JA, Kobayashi T, Dietmann S, Surani MA.

Stem Cell Reports. 2017 Jun 6;8(6):1645-1658. doi: 10.1016/j.stemcr.2017.05.014.

19.

Decoding the Pluripotency Network: The Emergence of New Transcription Factors.

Lee KC, Wong WK, Feng B.

Biomedicines. 2013 Dec 16;1(1):49-78. doi: 10.3390/biomedicines1010049. Review.

20.

Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.

Hendrickson PG, Doráis JA, Grow EJ, Whiddon JL, Lim JW, Wike CL, Weaver BD, Pflueger C, Emery BR, Wilcox AL, Nix DA, Peterson CM, Tapscott SJ, Carrell DT, Cairns BR.

Nat Genet. 2017 Jun;49(6):925-934. doi: 10.1038/ng.3844. Epub 2017 May 1.

Supplemental Content

Support Center