Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 30

1.

Statistical principle-based approach for recognizing and normalizing microRNAs described in scientific literature.

Dai HJ, Wang CK, Chang NW, Huang MS, Jonnagaddala J, Wang FD, Hsu WL.

Database (Oxford). 2019 Jan 1;2019. pii: baz030. doi: 10.1093/database/baz030.

2.

miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions.

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY, Tai CS, Wei TY, Tsai TR, Huang HT, Wang CY, Wu HY, Ho SY, Chen PR, Chuang CH, Hsieh PJ, Wu YS, Chen WL, Li MJ, Wu YC, Huang XY, Ng FL, Buddhakosai W, Huang PC, Lan KC, Huang CY, Weng SL, Cheng YN, Liang C, Hsu WL, Huang HD.

Nucleic Acids Res. 2018 Jan 4;46(D1):D296-D302. doi: 10.1093/nar/gkx1067.

3.

The MicroRNA Interaction Network of Lipid Diseases.

Kandhro AH, Shoombuatong W, Nantasenamat C, Prachayasittikul V, Nuchnoi P.

Front Genet. 2017 Sep 22;8:116. doi: 10.3389/fgene.2017.00116. eCollection 2017.

4.

MicroRNAs tend to synergistically control expression of genes encoding extensively-expressed proteins in humans.

Chen X, Zhao W, Yuan Y, Bai Y, Sun Y, Zhu W, Du Z.

PeerJ. 2017 Aug 14;5:e3682. doi: 10.7717/peerj.3682. eCollection 2017.

5.

Extracting microRNA-gene relations from biomedical literature using distant supervision.

Lamurias A, Clarke LA, Couto FM.

PLoS One. 2017 Mar 6;12(3):e0171929. doi: 10.1371/journal.pone.0171929. eCollection 2017.

6.

Construction of an miRNA-regulated drug-pathway network reveals drug repurposing candidates for myasthenia gravis.

Cao Y, Lu X, Wang J, Zhang H, Liu Z, Xu S, Wang T, Ning S, Xiao B, Wang L.

Int J Mol Med. 2017 Feb;39(2):268-278. doi: 10.3892/ijmm.2017.2853. Epub 2017 Jan 11.

7.

Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts.

Roy S, Curry BC, Madahian B, Homayouni R.

BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):350.

8.

miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.

Gupta S, Ross KE, Tudor CO, Wu CH, Schmidt CJ, Vijay-Shanker K.

J Biomed Semantics. 2016 Apr 29;7(1):9. doi: 10.1186/s13326-015-0044-y.

9.

LimiTT: link miRNAs to targets.

Bayer J, Kuenne C, Preussner J, Looso M.

BMC Bioinformatics. 2016 May 11;17(1):210. doi: 10.1186/s12859-016-1070-1.

10.

Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition.

Lee S, Hwang S, Yu HJ, Oh D, Choi YJ, Kim MC, Kim Y, Ryu DY.

PLoS One. 2016 Jan 5;11(1):e0146374. doi: 10.1371/journal.pone.0146374. eCollection 2016.

11.

miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database.

Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD.

Nucleic Acids Res. 2016 Jan 4;44(D1):D239-47. doi: 10.1093/nar/gkv1258. Epub 2015 Nov 20.

12.

Detecting miRNA Mentions and Relations in Biomedical Literature.

Bagewadi S, Bobić T, Hofmann-Apitius M, Fluck J, Klinger R.

Version 3. F1000Res. 2014 Aug 28 [revised 2015 Jan 1];3:205. doi: 10.12688/f1000research.4591.3. eCollection 2014.

13.

miRTex: A Text Mining System for miRNA-Gene Relation Extraction.

Li G, Ross KE, Arighi CN, Peng Y, Wu CH, Vijay-Shanker K.

PLoS Comput Biol. 2015 Sep 25;11(9):e1004391. doi: 10.1371/journal.pcbi.1004391. eCollection 2015.

14.

Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis.

Meng J, Zhang D, Pan N, Sun N, Wang Q, Fan J, Zhou P, Zhu W, Jiang L.

PeerJ. 2015 May 21;3:e971. doi: 10.7717/peerj.971. eCollection 2015.

15.

Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

Ellwanger DC, Leonhardt JF, Mewes HW.

Nucleic Acids Res. 2014 Dec 1;42(21). doi: 10.1093/nar/gku916. Epub 2014 Oct 7.

16.

Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death.

Skommer J, Rana I, Marques FZ, Zhu W, Du Z, Charchar FJ.

Cell Death Dis. 2014 Jul 17;5:e1325. doi: 10.1038/cddis.2014.287. Review.

17.

MicroRNAs as Haematopoiesis Regulators.

Undi RB, Kandi R, Gutti RK.

Adv Hematol. 2013;2013:695754. doi: 10.1155/2013/695754. Epub 2013 Dec 24. Review.

18.

miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions.

Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, Jian TY, Lin FM, Chang TH, Weng SL, Liao KW, Liao IE, Liu CC, Huang HD.

Nucleic Acids Res. 2014 Jan;42(Database issue):D78-85. doi: 10.1093/nar/gkt1266. Epub 2013 Dec 4.

19.

Dissection of protein interactomics highlights microRNA synergy.

Zhu W, Zhao Y, Xu Y, Sun Y, Wang Z, Yuan W, Du Z.

PLoS One. 2013 May 14;8(5):e63342. doi: 10.1371/journal.pone.0063342. Print 2013.

20.

Identification of novel pretranslational regulatory mechanisms for NF-κB activation.

Huang X, Gong R, Li X, Virtue A, Yang F, Yang IH, Tran AH, Yang XF, Wang H.

J Biol Chem. 2013 May 31;288(22):15628-40. doi: 10.1074/jbc.M113.460626. Epub 2013 Mar 20.

Supplemental Content

Support Center