Sort by

Send to

Choose Destination

Links from PubMed

Items: 17


Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.

Lu M, Chan S, Babanova S, Bretschger O.

Biotechnol Bioeng. 2017 Jan;114(1):96-105. doi: 10.1002/bit.26046.


Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

Miller RB 2nd, Sadek A, Rodriguez A, Iannuzzi M, Giai C, Senko JM, Monty CN.

PLoS One. 2016 Jan 29;11(1):e0147899. doi: 10.1371/journal.pone.0147899.


High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis.

Gorgel M, Ulstrup JJ, Bøggild A, Jones NC, Hoffmann SV, Nissen P, Boesen T.

BMC Struct Biol. 2015 Feb 27;15:4. doi: 10.1186/s12900-015-0031-7.


Investigating microbial activities of electrode-associated microorganisms in real-time.

Aracic S, Semenec L, Franks AE.

Front Microbiol. 2014 Nov 28;5:663. doi: 10.3389/fmicb.2014.00663.


A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803.

Cereda A, Hitchcock A, Symes MD, Cronin L, Bibby TS, Jones AK.

PLoS One. 2014 Mar 17;9(3):e91484. doi: 10.1371/journal.pone.0091484.


Microbial population and functional dynamics associated with surface potential and carbon metabolism.

Ishii S, Suzuki S, Norden-Krichmar TM, Phan T, Wanger G, Nealson KH, Sekiguchi Y, Gorby YA, Bretschger O.

ISME J. 2014 May;8(5):963-78. doi: 10.1038/ismej.2013.217.


Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex.

McMillan DG, Marritt SJ, Firer-Sherwood MA, Shi L, Richardson DJ, Evans SD, Elliott SJ, Butt JN, Jeuken LJ.

J Am Chem Soc. 2013 Jul 17;135(28):10550-6. doi: 10.1021/ja405072z.


Microscale gradients and their role in electron-transfer mechanisms in biofilms.

Beyenal H, Babauta JT.

Biochem Soc Trans. 2012 Dec 1;40(6):1315-8. doi: 10.1042/BST20120105. Review.


Electrochemically active biofilms: facts and fiction. A review.

Babauta J, Renslow R, Lewandowski Z, Beyenal H.

Biofouling. 2012;28(8):789-812. doi: 10.1080/08927014.2012.710324. Review.


Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA.

McMillan DG, Marritt SJ, Butt JN, Jeuken LJ.

J Biol Chem. 2012 Apr 20;287(17):14215-25. doi: 10.1074/jbc.M112.348813.


100 years of microbial electricity production: three concepts for the future.

Arends JB, Verstraete W.

Microb Biotechnol. 2012 May;5(3):333-46. doi: 10.1111/j.1751-7915.2011.00302.x. Review.


Roles of two Shewanella oneidensis MR-1 extracellular endonucleases.

Gödeke J, Heun M, Bubendorfer S, Paul K, Thormann KM.

Appl Environ Microbiol. 2011 Aug;77(15):5342-51. doi: 10.1128/AEM.00643-11.


How the xap locus put electrical "Zap" in Geobacter sulfurreducens biofilms.

Magnuson TS.

J Bacteriol. 2011 Mar;193(5):1021-2. doi: 10.1128/JB.01478-10. No abstract available.


Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1.

Gödeke J, Paul K, Lassak J, Thormann KM.

ISME J. 2011 Apr;5(4):613-26. doi: 10.1038/ismej.2010.153.


Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1.

El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA.

Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18127-31. doi: 10.1073/pnas.1004880107.

Items per page

Supplemental Content

Support Center