Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 46

1.

Pediatric cerebral cavernous malformations: Genetics, pathogenesis, and management.

Ghali MG, Srinivasan VM, Mohan AC, Jones JY, Kan PT, Lam S.

Surg Neurol Int. 2016 Dec 28;7(Suppl 44):S1127-S1134. doi: 10.4103/2152-7806.196921. eCollection 2016. Review. No abstract available.

2.

Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus.

Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA.

J Biol Chem. 2017 Feb 3;292(5):1884-1898. doi: 10.1074/jbc.M116.762393. Epub 2016 Dec 21.

PMID:
28003363
3.

Cerebral Cavernous Malformations: Review of the Genetic and Protein-Protein Interactions Resulting in Disease Pathogenesis.

Baranoski JF, Kalani MY, Przybylowski CJ, Zabramski JM.

Front Surg. 2016 Nov 14;3:60. eCollection 2016. Review. Erratum in: Front Surg. 2017 Jul 18;4:31.

4.

RhoA Kinase Inhibition With Fasudil Versus Simvastatin in Murine Models of Cerebral Cavernous Malformations.

Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA.

Stroke. 2017 Jan;48(1):187-194. doi: 10.1161/STROKEAHA.116.015013. Epub 2016 Nov 22.

PMID:
27879448
5.

RHO binding to FAM65A regulates Golgi reorientation during cell migration.

Mardakheh FK, Self A, Marshall CJ.

J Cell Sci. 2016 Dec 15;129(24):4466-4479. Epub 2016 Nov 2.

6.

Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin.

Retta SF, Glading AJ.

Int J Biochem Cell Biol. 2016 Dec;81(Pt B):254-270. doi: 10.1016/j.biocel.2016.09.011. Epub 2016 Sep 14.

7.

Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier.

DiStefano PV, Smrcka AV, Glading AJ.

PLoS One. 2016 Sep 9;11(9):e0162338. doi: 10.1371/journal.pone.0162338. eCollection 2016.

8.

RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix.

Li C, Zhen G, Chai Y, Xie L, Crane JL, Farber E, Farber CR, Luo X, Gao P, Cao X, Wan M.

Nat Commun. 2016 Apr 29;7:11455. doi: 10.1038/ncomms11455.

9.

Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling.

Zhou Z, Tang AT, Wong WY, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JS, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML.

Nature. 2016 Apr 7;532(7597):122-6. doi: 10.1038/nature17178. Epub 2016 Mar 30. Erratum in: Nature. 2016 May 25;536(7617):488.

10.
11.

ANKS1B Interacts with the Cerebral Cavernous Malformation Protein-1 and Controls Endothelial Permeability but Not Sprouting Angiogenesis.

Herberich SE, Klose R, Moll I, Yang WJ, Wüstehube-Lausch J, Fischer A.

PLoS One. 2015 Dec 23;10(12):e0145304. doi: 10.1371/journal.pone.0145304. eCollection 2015.

12.

KLF4 is a key determinant in the development and progression of cerebral cavernous malformations.

Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E.

EMBO Mol Med. 2016 Jan 1;8(1):6-24. doi: 10.15252/emmm.201505433.

13.

Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma.

Lambertz N, El Hindy N, Kreitschmann-Andermahr I, Stein KP, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y.

BMC Cancer. 2015 Oct 21;15:759. doi: 10.1186/s12885-015-1709-8.

14.

PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2-cortactin cross-talk.

Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV.

Acta Neuropathol. 2015 Nov;130(5):731-50. doi: 10.1007/s00401-015-1479-z. Epub 2015 Sep 18.

15.

Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth.

Zhu Y, Zhao K, Prinz A, Keyvani K, Lambertz N, Kreitschmann-Andermahr I, Lei T, Sure U.

Neuro Oncol. 2016 Apr;18(4):538-48. doi: 10.1093/neuonc/nov155. Epub 2015 Aug 8.

16.

Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex.

Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B.

Nat Commun. 2015 Aug 3;6:7937. doi: 10.1038/ncomms8937.

17.

Rho kinase as a target for cerebral vascular disorders.

Bond LM, Sellers JR, McKerracher L.

Future Med Chem. 2015;7(8):1039-53. doi: 10.4155/fmc.15.45. Review.

18.

CCM2-CCM3 interaction stabilizes their protein expression and permits endothelial network formation.

Draheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA.

J Cell Biol. 2015 Mar 30;208(7):987-1001. doi: 10.1083/jcb.201407129.

19.

Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation.

Gibson CC, Zhu W, Davis CT, Bowman-Kirigin JA, Chan AC, Ling J, Walker AE, Goitre L, Delle Monache S, Retta SF, Shiu YT, Grossmann AH, Thomas KR, Donato AJ, Lesniewski LA, Whitehead KJ, Li DY.

Circulation. 2015 Jan 20;131(3):289-99. doi: 10.1161/CIRCULATIONAHA.114.010403. Epub 2014 Dec 8.

20.

KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ.

J Biol Chem. 2014 Nov 21;289(47):33054-65. doi: 10.1074/jbc.M114.582304. Epub 2014 Oct 15.

Supplemental Content

Support Center