Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 32


Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis.

Wang X, Sun B, Liu S, Xia T.

NanoImpact. 2017 Apr;6:99-108. doi: 10.1016/j.impact.2016.08.002. Epub 2016 Aug 20.


Myofibroblasts and lung fibrosis induced by carbon nanotube exposure.

Dong J, Ma Q.

Part Fibre Toxicol. 2016 Nov 4;13(1):60. Review.


Effects of titanium dioxide nanoparticles on human keratinocytes.

Wright C, Iyer AK, Wang L, Wu N, Yakisich JS, Rojanasakul Y, Azad N.

Drug Chem Toxicol. 2017 Jan;40(1):90-100. doi: 10.1080/01480545.2016.1185111. Epub 2016 Jun 16.


Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure.

Dandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, Bonner JC.

Part Fibre Toxicol. 2016 Jun 8;13(1):29. doi: 10.1186/s12989-016-0141-9.


Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating.

Davidson DC, Derk R, He X, Stueckle TA, Cohen J, Pirela SV, Demokritou P, Rojanasakul Y, Wang L.

Part Fibre Toxicol. 2016 May 4;13(1):23. doi: 10.1186/s12989-016-0134-8.


Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).

Vietti G, Lison D, van den Brule S.

Part Fibre Toxicol. 2016 Feb 29;13:11. doi: 10.1186/s12989-016-0123-y. Review.


Development of risk-based nanomaterial groups for occupational exposure control.

Kuempel ED, Castranova V, Geraci CL, Schulte PA.

J Nanopart Res. 2012 Sep;14:1029. Epub 2012 Aug 7.


Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis.

Mishra A, Stueckle TA, Mercer RR, Derk R, Rojanasakul Y, Castranova V, Wang L.

Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L821-33. doi: 10.1152/ajplung.00002.2015. Epub 2015 Aug 21.


Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes.

Chen D, Stueckle TA, Luanpitpong S, Rojanasakul Y, Lu Y, Wang L.

Nanoscale Res Lett. 2015 Jan 27;10:12. doi: 10.1186/s11671-014-0707-0. eCollection 2015.


Advances in mechanisms and signaling pathways of carbon nanotube toxicity.

Dong J, Ma Q.

Nanotoxicology. 2015;9(5):658-76. doi: 10.3109/17435390.2015.1009187. Epub 2015 Feb 13. Review.


The effects of carbon nanotubes on lung and dermal cellular behaviors.

Luanpitpong S, Wang L, Rojanasakul Y.

Nanomedicine (Lond). 2014 May;9(6):895-912. doi: 10.2217/nnm.14.42. Review.


Induction of stemlike cells with fibrogenic properties by carbon nanotubes and its role in fibrogenesis.

Luanpitpong S, Wang L, Manke A, Martin KH, Ammer AG, Castranova V, Yang Y, Rojansakul Y.

Nano Lett. 2014 Jun 11;14(6):3110-6. doi: 10.1021/nl5002026. Epub 2014 May 30.


Effect of fiber length on carbon nanotube-induced fibrogenesis.

Manke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, Derk R, Stueckle TA, Porter DW, Sager T, Gou H, Dinu CZ, Wu N, Mercer RR, Rojanasakul Y.

Int J Mol Sci. 2014 Apr 29;15(5):7444-61. doi: 10.3390/ijms15057444.


Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons.

Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, Castranova V.

Am J Physiol Lung Cell Mol Physiol. 2014 Jan;306(2):L170-82. doi: 10.1152/ajplung.00167.2013. Epub 2013 Nov 8.


Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay.

Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S.

Part Fibre Toxicol. 2013 Oct 10;10:52. doi: 10.1186/1743-8977-10-52.


Mechanisms of nanoparticle-induced oxidative stress and toxicity.

Manke A, Wang L, Rojanasakul Y.

Biomed Res Int. 2013;2013:942916. doi: 10.1155/2013/942916. Epub 2013 Aug 20.


A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment.

Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, Beryt E, Bonner JC, Boverhof D, Carter J, Castranova V, Deshazo JR, Hussain SM, Kane AB, Klaessig F, Kuempel E, Lafranconi M, Landsiedel R, Malloy T, Miller MB, Morris J, Moss K, Oberdorster G, Pinkerton K, Pleus RC, Shatkin JA, Thomas R, Tolaymat T, Wang A, Wong J.

ACS Nano. 2013 Aug 27;7(8):6422-33. doi: 10.1021/nn4037927. Epub 2013 Aug 7.


Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models.

Hamilton RF Jr, Xiang C, Li M, Ka I, Yang F, Ma D, Porter DW, Wu N, Holian A.

Inhal Toxicol. 2013 Mar;25(4):199-210. doi: 10.3109/08958378.2013.775197.


Occupational nanosafety considerations for carbon nanotubes and carbon nanofibers.

Castranova V, Schulte PA, Zumwalde RD.

Acc Chem Res. 2013 Mar 19;46(3):642-9. doi: 10.1021/ar300004a. Epub 2012 Dec 5.

Supplemental Content

Support Center