Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 45

1.

Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge.

Aigha I, Raynaud C.

Glob Cardiol Sci Pract. 2016 Mar 31;2016(1):e201606. doi: 10.21542/gcsp.2016.6. Review.

2.

21st Century Cardio-Oncology: Identifying Cardiac Safety Signals in the Era of Personalized Medicine.

Sheng CC, Amiri-Kordestani L, Palmby T, Force T, Hong CC, Wu JC, Croce K, Kim G, Moslehi J.

JACC Basic Transl Sci. 2016 Aug;1(5):386-398. doi: 10.1016/j.jacbts.2016.05.008.

3.

Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes.

Yücel G, Zhao Z, El-Battrawy I, Lan H, Lang S, Li X, Buljubasic F, Zimmermann WH, Cyganek L, Utikal J, Ravens U, Wieland T, Borggrefe M, Zhou XB, Akin I.

Sci Rep. 2017 Jun 7;7(1):2935. doi: 10.1038/s41598-017-03147-4.

4.

Induced Pluripotent Stem Cell-Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function.

Chauveau S, Anyukhovsky EP, Ben-Ari M, Naor S, Jiang YP, Danilo P Jr, Rahim T, Burke S, Qiu X, Potapova IA, Doronin SV, Brink PR, Binah O, Cohen IS, Rosen MR.

Circ Arrhythm Electrophysiol. 2017 May;10(5):e004508. doi: 10.1161/CIRCEP.116.004508.

5.

Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells.

Inui S, Minami K, Ito E, Imaizumi H, Mori S, Koizumi M, Fukushima S, Miyagawa S, Sawa Y, Matsuura N.

J Radiat Res. 2017 Jul 1;58(4):430-438. doi: 10.1093/jrr/rrw124.

7.

Hyperthermia Influences the Effects of Sodium Channel Blocking Drugs in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

El-Battrawy I, Lang S, Zhao Z, Akin I, Yücel G, Meister S, Patocskai B, Behnes M, Rudic B, Tülümen E, Liebe V, Tiburcy M, Dworacek J, Zimmermann WH, Utikal J, Wieland T, Borggrefe M, Zhou XB.

PLoS One. 2016 Nov 9;11(11):e0166143. doi: 10.1371/journal.pone.0166143. eCollection 2016.

8.

Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue.

Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Murry CE.

Circulation. 2016 Nov 15;134(20):1557-1567. Epub 2016 Oct 13.

9.

Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development.

Smith BW, Stanford EA, Sherr DH, Murphy GJ.

Stem Cells Int. 2016;2016:2574152. doi: 10.1155/2016/2574152. Epub 2016 Apr 11.

10.

Pluripotent Stem Cell Therapy in Ischemic Cardiovascular Disease.

Chao TH, Chen IC, Tseng SY, Li YH.

Acta Cardiol Sin. 2014 Sep;30(5):365-74. Review.

11.

Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells.

Wang H, Xi Y, Zheng Y, Wang X, Cooney AJ.

Stem Cell Res. 2016 Mar;16(2):522-30. doi: 10.1016/j.scr.2016.02.032. Epub 2016 Feb 23.

12.

Calcium signaling in human stem cell-derived cardiomyocytes: Evidence from normal subjects and CPVT afflicted patients.

Zhang XH, Morad M.

Cell Calcium. 2016 Mar;59(2-3):98-107. doi: 10.1016/j.ceca.2015.12.002. Epub 2015 Dec 15. Review.

13.

Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.

Jung G, Fajardo G, Ribeiro AJ, Kooiker KB, Coronado M, Zhao M, Hu DQ, Reddy S, Kodo K, Sriram K, Insel PA, Wu JC, Pruitt BL, Bernstein D.

FASEB J. 2016 Apr;30(4):1464-79. doi: 10.1096/fj.15-280982. Epub 2015 Dec 16.

14.

Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes.

Kane C, Couch L, Terracciano CM.

Front Cell Dev Biol. 2015 Sep 29;3:59. doi: 10.3389/fcell.2015.00059. eCollection 2015. Review.

15.

Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells.

Tanaka A, Yuasa S, Node K, Fukuda K.

Int J Mol Sci. 2015 Aug 12;16(8):18894-922. doi: 10.3390/ijms160818894. Review.

16.

Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations.

Novak A, Barad L, Lorber A, Gherghiceanu M, Reiter I, Eisen B, Eldor L, Itskovitz-Eldor J, Eldar M, Arad M, Binah O.

J Cell Mol Med. 2015 Aug;19(8):2006-18. doi: 10.1111/jcmm.12581. Epub 2015 Jul 8.

17.

Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories.

Hwang HS, Kryshtal DO, Feaster TK, Sánchez-Freire V, Zhang J, Kamp TJ, Hong CC, Wu JC, Knollmann BC.

J Mol Cell Cardiol. 2015 Aug;85:79-88. doi: 10.1016/j.yjmcc.2015.05.003. Epub 2015 May 14.

18.

Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.

Feric NT, Radisic M.

Adv Drug Deliv Rev. 2016 Jan 15;96:110-34. doi: 10.1016/j.addr.2015.04.019. Epub 2015 May 5. Review.

19.

Eag Domains Regulate LQT Mutant hERG Channels in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

Liu QN, Trudeau MC.

PLoS One. 2015 Apr 29;10(4):e0123951. doi: 10.1371/journal.pone.0123951. eCollection 2015.

20.

Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy.

Karakikes I, Stillitano F, Nonnenmacher M, Tzimas C, Sanoudou D, Termglinchan V, Kong CW, Rushing S, Hansen J, Ceholski D, Kolokathis F, Kremastinos D, Katoulis A, Ren L, Cohen N, Gho JM, Tsiapras D, Vink A, Wu JC, Asselbergs FW, Li RA, Hulot JS, Kranias EG, Hajjar RJ.

Nat Commun. 2015 Apr 29;6:6955. doi: 10.1038/ncomms7955.

Supplemental Content

Support Center