Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Fibril formation from the amyloid-β peptide is governed by a dynamic equilibrium involving association and dissociation of the monomer.

Hoshino M.

Biophys Rev. 2017 Feb;9(1):9-16. doi: 10.1007/s12551-016-0217-7. Epub 2016 Aug 25. Review.

2.

Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.

Liu S, Hossinger A, Göbbels S, Vorberg IM.

Prion. 2017 Mar 4;11(2):98-112. doi: 10.1080/19336896.2017.1306162. Review.

3.

Inferring Mechanistic Parameters from Amyloid Formation Kinetics by Approximate Bayesian Computation.

Nakatani-Webster E, Nath A.

Biophys J. 2017 Mar 14;112(5):868-880. doi: 10.1016/j.bpj.2017.01.011.

PMID:
28297646
4.

Mapping the Broad Structural and Mechanical Properties of Amyloid Fibrils.

Lamour G, Nassar R, Chan PH, Bozkurt G, Li J, Bui JM, Yip CK, Mayor T, Li H, Wu H, Gsponer JA.

Biophys J. 2017 Feb 28;112(4):584-594. doi: 10.1016/j.bpj.2016.12.036.

PMID:
28256219
5.

Reduced Lipid Bilayer Thickness Regulates the Aggregation and Cytotoxicity of Amyloid-β.

Korshavn KJ, Satriano C, Lin Y, Zhang R, Dulchavsky M, Bhunia A, Ivanova MI, Lee YH, La Rosa C, Lim MH, Ramamoorthy A.

J Biol Chem. 2017 Mar 17;292(11):4638-4650. doi: 10.1074/jbc.M116.764092. Epub 2017 Feb 1.

PMID:
28154182
6.

Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds.

Borland H, Vilhardt F.

Int J Mol Sci. 2017 Jan 23;18(1). pii: E227. doi: 10.3390/ijms18010227. Review.

7.

How Do Gyrating Beads Accelerate Amyloid Fibrillization?

Abdolvahabi A, Shi Y, Rasouli S, Croom CM, Chuprin A, Shaw BF.

Biophys J. 2017 Jan 24;112(2):250-264. doi: 10.1016/j.bpj.2016.12.004.

8.

Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates.

Castello F, Paredes JM, Ruedas-Rama MJ, Martin M, Roldan M, Casares S, Orte A.

Sci Rep. 2017 Jan 9;7:40065. doi: 10.1038/srep40065.

9.

Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core.

de Oliveira GA, Marques MA, Cruzeiro-Silva C, Cordeiro Y, Schuabb C, Moraes AH, Winter R, Oschkinat H, Foguel D, Freitas MS, Silva JL.

Sci Rep. 2016 Nov 30;6:37990. doi: 10.1038/srep37990.

10.

Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils.

Bastidas OH, Green B, Sprague M, Peters MH.

Sci Rep. 2016 Nov 3;6:36499. doi: 10.1038/srep36499.

11.

Small Heat-shock Proteins Prevent α-Synuclein Aggregation via Transient Interactions and Their Efficacy Is Affected by the Rate of Aggregation.

Cox D, Selig E, Griffin MD, Carver JA, Ecroyd H.

J Biol Chem. 2016 Oct 21;291(43):22618-22629. Epub 2016 Sep 1.

PMID:
27587396
12.

Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation.

Flagmeier P, Meisl G, Vendruscolo M, Knowles TP, Dobson CM, Buell AK, Galvagnion C.

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10328-33. doi: 10.1073/pnas.1604645113. Epub 2016 Aug 29.

13.

Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway.

Misra P, Kodali R, Chemuru S, Kar K, Wetzel R.

Nat Commun. 2016 Aug 22;7:12419. doi: 10.1038/ncomms12419.

14.

A Decentralized Approach to the Formulation of Hypotheses: A Hierarchical Structural Model for a Prion Self-Assembled System.

Wang M, Zhang F, Song C, Shi P, Zhu J.

Sci Rep. 2016 Jul 28;6:30633. doi: 10.1038/srep30633.

15.

AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species.

Ruggeri FS, Habchi J, Cerreta A, Dietler G.

Curr Pharm Des. 2016;22(26):3950-70.

16.

Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics.

Markvoort AJ, Eikelder HM, Hilbers PA, de Greef TF.

ACS Cent Sci. 2016 Apr 27;2(4):232-41. doi: 10.1021/acscentsci.6b00009. Epub 2016 Mar 21.

17.

Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion.

Espargaró A, Busquets MA, Estelrich J, Sabate R.

Front Mol Neurosci. 2016 Apr 22;9:29. doi: 10.3389/fnmol.2016.00029. eCollection 2016.

18.

Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism.

Pham CL, Rey A, Lo V, Soulès M, Ren Q, Meisl G, Knowles TP, Kwan AH, Sunde M.

Sci Rep. 2016 May 4;6:25288. doi: 10.1038/srep25288.

19.

The Dynamics and Turnover of Tau Aggregates in Cultured Cells: INSIGHTS INTO THERAPIES FOR TAUOPATHIES.

Guo JL, Buist A, Soares A, Callaerts K, Calafate S, Stevenaert F, Daniels JP, Zoll BE, Crowe A, Brunden KR, Moechars D, Lee VM.

J Biol Chem. 2016 Jun 17;291(25):13175-93. doi: 10.1074/jbc.M115.712083. Epub 2016 Apr 18.

PMID:
27129267
20.

Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation.

Arosio P, Michaels TC, Linse S, Månsson C, Emanuelsson C, Presto J, Johansson J, Vendruscolo M, Dobson CM, Knowles TP.

Nat Commun. 2016 Mar 24;7:10948. doi: 10.1038/ncomms10948.

Supplemental Content

Support Center