Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 37

1.

Investigations into Hypoxia and Oxidative Stress at the Optic Nerve Head in a Rat Model of Glaucoma.

Chidlow G, Wood JPM, Casson RJ.

Front Neurosci. 2017 Aug 24;11:478. doi: 10.3389/fnins.2017.00478. eCollection 2017.

2.

In Vivo Noninvasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study.

Sit AJ, Lin SC, Kazemi A, McLaren JW, Pruet CM, Zhang X.

J Glaucoma. 2017 Nov;26(11):967-973. doi: 10.1097/IJG.0000000000000774.

PMID:
28858155
3.

Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures.

Zhou B, Sit AJ, Zhang X.

Ultrasonics. 2017 Nov;81:86-92. doi: 10.1016/j.ultras.2017.06.008. Epub 2017 Jun 7.

PMID:
28618301
4.

Shared and Differential Retinal Responses against Optic Nerve Injury and Ocular Hypertension.

Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, Nadal-Nicolás FM, Ortin-Martinez A, Rovere G, Salinas-Navarro M, Lucas-Ruiz F, Sanchez-Migallon MC, Sobrado-Calvo P, Aviles-Trigueros M, Villegas-Pérez MP, Agudo-Barriuso M.

Front Neurosci. 2017 Apr 26;11:235. doi: 10.3389/fnins.2017.00235. eCollection 2017. Review.

5.

Evaluating retinal ganglion cell loss and dysfunction.

Mead B, Tomarev S.

Exp Eye Res. 2016 Oct;151:96-106. doi: 10.1016/j.exer.2016.08.006. Epub 2016 Aug 12. Review.

6.

Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma.

Madeira MH, Ortin-Martinez A, Nadal-Nícolas F, Ambrósio AF, Vidal-Sanz M, Agudo-Barriuso M, Santiago AR.

Sci Rep. 2016 Jun 8;6:27532. doi: 10.1038/srep27532.

7.

Bilateral neuroinflammatory processes in visual pathways induced by unilateral ocular hypertension in the rat.

Sapienza A, Raveu AL, Reboussin E, Roubeix C, Boucher C, Dégardin J, Godefroy D, Rostène W, Reaux-Le Goazigo A, Baudouin C, Melik Parsadaniantz S.

J Neuroinflammation. 2016 Feb 20;13:44. doi: 10.1186/s12974-016-0509-7.

8.

Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma.

Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML.

Exp Eye Res. 2016 Sep;150:34-43. doi: 10.1016/j.exer.2016.01.014. Epub 2016 Feb 3.

9.

Effect of suction on macular thickness and retinal nerve fiber layer thickness during LASIK used femtosecond laser and Moria M2 microkeratome.

Zhang J, Zhou YH.

Int J Ophthalmol. 2015 Aug 18;8(4):777-83. doi: 10.3980/j.issn.2222-3959.2015.04.24. eCollection 2015.

10.

β-III-Tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma.

Jiang SM, Zeng LP, Zeng JH, Tang L, Chen XM, Wei X.

Int J Ophthalmol. 2015 Aug 18;8(4):643-52. doi: 10.3980/j.issn.2222-3959.2015.04.01. eCollection 2015.

11.

In vivo imaging methods to assess glaucomatous optic neuropathy.

Fortune B.

Exp Eye Res. 2015 Dec;141:139-53. doi: 10.1016/j.exer.2015.06.001. Epub 2015 Jun 3. Review.

12.

Effects of ocular hypertension in the visual system of pigmented mice.

Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M, Alarcón-Martínez L, Ortín-Martínez A, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M.

PLoS One. 2015 Mar 26;10(3):e0121134. doi: 10.1371/journal.pone.0121134. eCollection 2015.

13.

Neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma.

Stankowska DL, Minton AZ, Rutledge MA, Mueller BH 2nd, Phatak NR, He S, Ma HY, Forster MJ, Yorio T, Krishnamoorthy RR.

Invest Ophthalmol Vis Sci. 2015 Jan 13;56(2):893-907. doi: 10.1167/iovs.14-15008.

14.

Comparison of retinal nerve fiber layer thickness in vivo and axonal transport after chronic intraocular pressure elevation in young versus older rats.

Abbott CJ, Choe TE, Burgoyne CF, Cull G, Wang L, Fortune B.

PLoS One. 2014 Dec 11;9(12):e114546. doi: 10.1371/journal.pone.0114546. eCollection 2014.

15.

A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

Ortín-Martínez A, Valiente-Soriano FJ, García-Ayuso D, Alarcón-Martínez L, Jiménez-López M, Bernal-Garro JM, Nieto-López L, Nadal-Nicolás FM, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M.

PLoS One. 2014 Dec 2;9(12):e113798. doi: 10.1371/journal.pone.0113798. eCollection 2014.

16.

Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat.

Choe TE, Abbott CJ, Piper C, Wang L, Fortune B.

PLoS One. 2014 Nov 13;9(11):e113011. doi: 10.1371/journal.pone.0113011. eCollection 2014.

17.

Comparative evaluation of methods for estimating retinal ganglion cell loss in retinal sections and wholemounts.

Mead B, Thompson A, Scheven BA, Logan A, Berry M, Leadbeater W.

PLoS One. 2014 Oct 24;9(10):e110612. doi: 10.1371/journal.pone.0110612. eCollection 2014.

18.

Displaced retinal ganglion cells in albino and pigmented rats.

Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M.

Front Neuroanat. 2014 Oct 6;8:99. doi: 10.3389/fnana.2014.00099. eCollection 2014.

19.

Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats.

Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B.

Invest Ophthalmol Vis Sci. 2014 Feb 4;55(2):674-87. doi: 10.1167/iovs.13-12811.

20.

Reflectance speckle of retinal nerve fiber layer reveals axonal activity.

Huang XR, Knighton RW, Zhou Y, Zhao XP.

Invest Ophthalmol Vis Sci. 2013 Apr 12;54(4):2616-23. doi: 10.1167/iovs.12-11347.

Supplemental Content

Support Center