Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 13

1.

Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif.

Luczo JM, Stambas J, Durr PA, Michalski WP, Bingham J.

Rev Med Virol. 2015 Nov;25(6):406-30. doi: 10.1002/rmv.1846. Review.

2.

The matrix gene segment destabilizes the acid and thermal stability of the hemagglutinin of pandemic live attenuated influenza virus vaccines.

O'Donnell CD, Vogel L, Matsuoka Y, Jin H, Subbarao K.

J Virol. 2014 Nov;88(21):12374-84. doi: 10.1128/JVI.01107-14.

3.

H5N1 vaccines in humans.

Baz M, Luke CJ, Cheng X, Jin H, Subbarao K.

Virus Res. 2013 Dec 5;178(1):78-98. doi: 10.1016/j.virusres.2013.05.006. Review.

4.

Role of position 627 of PB2 and the multibasic cleavage site of the hemagglutinin in the virulence of H5N1 avian influenza virus in chickens and ducks.

Schat KA, Bingham J, Butler JM, Chen LM, Lowther S, Crowley TM, Moore RJ, Donis RO, Lowenthal JW.

PLoS One. 2012;7(2):e30960. doi: 10.1371/journal.pone.0030960.

5.

Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus.

Lakdawala SS, Lamirande EW, Suguitan AL Jr, Wang W, Santos CP, Vogel L, Matsuoka Y, Lindsley WG, Jin H, Subbarao K.

PLoS Pathog. 2011 Dec;7(12):e1002443. doi: 10.1371/journal.ppat.1002443.

6.

The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals.

Suguitan AL Jr, Matsuoka Y, Lau YF, Santos CP, Vogel L, Cheng LI, Orandle M, Subbarao K.

J Virol. 2012 Mar;86(5):2706-14. doi: 10.1128/JVI.05546-11.

7.

Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine).

Gambaryan AS, Lomakina NF, Boravleva EY, Kropotkina EA, Mashin VV, Krasilnikov IV, Klimov AI, Rudenko LG.

Influenza Other Respir Viruses. 2012 May;6(3):188-95. doi: 10.1111/j.1750-2659.2011.00291.x.

8.

A rapid Flp-In system for expression of secreted H5N1 influenza hemagglutinin vaccine immunogen in mammalian cells.

Lu H, Khurana S, Verma N, Manischewitz J, King L, Beigel JH, Golding H.

PLoS One. 2011 Feb 28;6(2):e17297. doi: 10.1371/journal.pone.0017297.

9.

A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys.

Min JY, Vogel L, Matsuoka Y, Lu B, Swayne D, Jin H, Kemble G, Subbarao K.

J Virol. 2010 Nov;84(22):11950-60. doi: 10.1128/JVI.01305-10.

10.

A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

Hessel A, Schwendinger M, Fritz D, Coulibaly S, Holzer GW, Sabarth N, Kistner O, Wodal W, Kerschbaum A, Savidis-Dacho H, Crowe BA, Kreil TR, Barrett PN, Falkner FG.

PLoS One. 2010 Aug 16;5(8):e12217. doi: 10.1371/journal.pone.0012217.

11.

Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice.

Ye J, Shao H, Hickman D, Angel M, Xu K, Cai Y, Song H, Fouchier RA, Qin A, Perez DR.

Clin Vaccine Immunol. 2010 Sep;17(9):1363-70. doi: 10.1128/CVI.00002-10.

12.
13.

Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.

Berry JD, Hay K, Rini JM, Yu M, Wang L, Plummer FA, Corbett CR, Andonov A.

MAbs. 2010 Jan-Feb;2(1):53-66.

Items per page

Supplemental Content

Support Center