Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 45

1.

Integration of new alternative reference strain genome sequences into the Saccharomyces genome database.

Song G, Balakrishnan R, Binkley G, Costanzo MC, Dalusag K, Demeter J, Engel S, Hellerstedt ST, Karra K, Hitz BC, Nash RS, Paskov K, Sheppard T, Skrzypek M, Weng S, Wong E, Michael Cherry J.

Database (Oxford). 2016 Jun 1;2016. pii: baw074. doi: 10.1093/database/baw074. Print 2016.

2.

Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research.

McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers KS, Riley NM, Buzzell A, Parreiras LS, Ong IM, Landick R, Coon JJ, Gasch AP, Sato TK, Hittinger CT.

G3 (Bethesda). 2016 Jun 1;6(6):1757-66. doi: 10.1534/g3.116.029389.

3.

Survey of cryptic unstable transcripts in yeast.

Vera JM, Dowell RD.

BMC Genomics. 2016 Apr 26;17:305. doi: 10.1186/s12864-016-2622-5.

4.

Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.

Borneman AR, Forgan AH, Kolouchova R, Fraser JA, Schmidt SA.

G3 (Bethesda). 2016 Apr 7;6(4):957-71. doi: 10.1534/g3.115.025692.

5.

A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

Read T, Richmond PA, Dowell RD.

PLoS Genet. 2016 Jan 11;12(1):e1005746. doi: 10.1371/journal.pgen.1005746. eCollection 2016 Jan.

6.
7.

Draft Genome Sequence of Saccharomyces cerevisiae Strain NCIM3186 Used in the Production of Bioethanol from Sweet Sorghum.

Sravanthi Goud B, Ulaganathan K.

Genome Announc. 2015 Jul 30;3(4). pii: e00813-15. doi: 10.1128/genomeA.00813-15.

8.

AGAPE (Automated Genome Analysis PipelinE) for pan-genome analysis of Saccharomyces cerevisiae.

Song G, Dickins BJ, Demeter J, Engel S, Gallagher J, Choe K, Dunn B, Snyder M, Cherry JM.

PLoS One. 2015 Mar 17;10(3):e0120671. doi: 10.1371/journal.pone.0120671. eCollection 2015. Erratum in: PLoS One. 2015;10(5):e0129184. Gallagher, Jennifer [added]; Choe, Kisurb [added]; Snyder, Michael [added].

9.

Genome Sequence of Saccharomyces cerevisiae NCIM3107, Used in Bioethanol Production.

Ulaganathan K, Sravanthi Goud B, Reddy MM, Praveen Kumar V, Radhakrishna S, Balsingh J.

Genome Announc. 2015 Feb 12;3(1). pii: e01557-14. doi: 10.1128/genomeA.01557-14.

10.

Genomic insights into the Saccharomyces sensu stricto complex.

Borneman AR, Pretorius IS.

Genetics. 2015 Feb;199(2):281-91. doi: 10.1534/genetics.114.173633. Review.

11.

Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production.

Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJ, Noronha MF, Calderón LA, Mieczkowski PA, Argueso JL, Pereira GA.

Microb Cell Fact. 2015 Jan 30;14:13. doi: 10.1186/s12934-015-0196-6.

12.

Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.

Wohlbach DJ, Rovinskiy N, Lewis JA, Sardi M, Schackwitz WS, Martin JA, Deshpande S, Daum CG, Lipzen A, Sato TK, Gasch AP.

Genome Biol Evol. 2014 Sep;6(9):2557-66.

14.

Biofuels. Engineering alcohol tolerance in yeast.

Lam FH, Ghaderi A, Fink GR, Stephanopoulos G.

Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.

15.

Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.

Li Y, Zhang W, Zheng D, Zhou Z, Yu W, Zhang L, Feng L, Liang X, Guan W, Zhou J, Chen J, Lin Z.

Genome Biol Evol. 2014 Sep 10;6(9):2516-26. doi: 10.1093/gbe/evu201.

16.

MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches.

Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I.

Front Physiol. 2014 May 8;5:180. doi: 10.3389/fphys.2014.00180. eCollection 2014. Review.

17.

Finishing bacterial genome assemblies with Mix.

Soueidan H, Maurier F, Groppi A, Sirand-Pugnet P, Tardy F, Citti C, Dupuy V, Nikolski M.

BMC Bioinformatics. 2013;14 Suppl 15:S16. doi: 10.1186/1471-2105-14-S15-S16. Epub 2013 Oct 15.

18.

Physiological characterization of thermotolerant yeast for cellulosic ethanol production.

Costa DA, de Souza CJ, Costa PS, Rodrigues MQ, dos Santos AF, Lopes MR, Genier HL, Silveira WB, Fietto LG.

Appl Microbiol Biotechnol. 2014 Apr;98(8):3829-40. doi: 10.1007/s00253-014-5580-3. Epub 2014 Feb 18.

19.

Solving ethanol production problems with genetically modified yeast strains.

Abreu-Cavalheiro A, Monteiro G.

Braz J Microbiol. 2014 Jan 15;44(3):665-71. eCollection 2013. Review.

20.

Draft Genome Sequence of Saccharomyces cerevisiae IR-2, a Useful Industrial Strain for Highly Efficient Production of Bioethanol.

Sahara T, Fujimori KE, Nezuo M, Tsukahara M, Tochigi Y, Ohgiya S, Kamagata Y.

Genome Announc. 2014 Jan 16;2(1). pii: e01160-13. doi: 10.1128/genomeA.01160-13.

Items per page

Supplemental Content

Write to the Help Desk