Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 34

1.

Maternal effects of microRNAs in early embryogenesis.

McJunkin K.

RNA Biol. 2018 Feb 1;15(2):165-169. doi: 10.1080/15476286.2017.1402999. Epub 2017 Dec 8.

PMID:
29120257
2.

De novo characterization of microRNAs in oriental fruit moth Grapholita molesta and selection of reference genes for normalization of microRNA expression.

Wang X, Li Y, Zhang J, Zhang Q, Liu X, Li Z.

PLoS One. 2017 Feb 3;12(2):e0171120. doi: 10.1371/journal.pone.0171120. eCollection 2017.

3.

microRNAs stimulate translation initiation mediated by HCV-like IRESes.

Mengardi C, Limousin T, Ricci EP, Soto-Rifo R, Decimo D, Ohlmann T.

Nucleic Acids Res. 2017 May 5;45(8):4810-4824. doi: 10.1093/nar/gkw1345.

4.

Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy.

Youn H, Chung JK.

Expert Opin Biol Ther. 2015;15(9):1337-48. doi: 10.1517/14712598.2015.1057563. Epub 2015 Jun 30. Review.

5.

Roles of mRNA fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast.

Makino S, Mishima Y, Inoue K, Inada T.

J Biol Chem. 2015 Mar 27;290(13):8331-47. doi: 10.1074/jbc.M114.615088. Epub 2015 Feb 5.

6.

The complexity of miRNA-mediated repression.

Wilczynska A, Bushell M.

Cell Death Differ. 2015 Jan;22(1):22-33. doi: 10.1038/cdd.2014.112. Epub 2014 Sep 5. Review.

7.

Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes.

Kowalska J, Wypijewska del Nogal A, Darzynkiewicz ZM, Buck J, Nicola C, Kuhn AN, Lukaszewicz M, Zuberek J, Strenkowska M, Ziemniak M, Maciejczyk M, Bojarska E, Rhoads RE, Darzynkiewicz E, Sahin U, Jemielity J.

Nucleic Acids Res. 2014;42(16):10245-64. doi: 10.1093/nar/gku757. Epub 2014 Aug 22.

8.

Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1.

Rouya C, Siddiqui N, Morita M, Duchaine TF, Fabian MR, Sonenberg N.

RNA. 2014 Sep;20(9):1398-409. doi: 10.1261/rna.045302.114. Epub 2014 Jul 17.

9.

MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms.

Elramah S, Landry M, Favereaux A.

Front Cell Neurosci. 2014 Feb 11;8:31. doi: 10.3389/fncel.2014.00031. eCollection 2014. Review.

10.

The panorama of miRNA-mediated mechanisms in mammalian cells.

Stroynowska-Czerwinska A, Fiszer A, Krzyzosiak WJ.

Cell Mol Life Sci. 2014 Jun;71(12):2253-70. doi: 10.1007/s00018-013-1551-6. Epub 2014 Jan 29. Review.

11.

Synthesis and evaluation of fluorescent cap analogues for mRNA labelling.

Ziemniak M, Szabelski M, Lukaszewicz M, Nowicka A, Darzynkiewicz E, Rhoads RE, Wieczorek Z, Jemielity J.

RSC Adv. 2013;3(43). doi: 10.1039/C3RA42769B.

12.

Dual regulation of the lin-14 target mRNA by the lin-4 miRNA.

Shi Z, Hayes G, Ruvkun G.

PLoS One. 2013 Sep 13;8(9):e75475. doi: 10.1371/journal.pone.0075475. eCollection 2013.

13.

Functionally diverse microRNA effector complexes are regulated by extracellular signaling.

Wu PH, Isaji M, Carthew RW.

Mol Cell. 2013 Oct 10;52(1):113-23. doi: 10.1016/j.molcel.2013.08.023. Epub 2013 Sep 19.

14.

GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation.

Zekri L, Kuzuoğlu-Öztürk D, Izaurralde E.

EMBO J. 2013 Apr 3;32(7):1052-65. doi: 10.1038/emboj.2013.44. Epub 2013 Mar 5.

15.

MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1.

Mladinov D, Liu Y, Mattson DL, Liang M.

Nucleic Acids Res. 2013 Jan;41(2):1273-83. doi: 10.1093/nar/gks1228. Epub 2012 Dec 5.

16.

A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs.

Braun JE, Huntzinger E, Izaurralde E.

Cold Spring Harb Perspect Biol. 2012 Dec 1;4(12). pii: a012328. doi: 10.1101/cshperspect.a012328. Review.

17.

The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets.

Huntzinger E, Kuzuoglu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E.

Nucleic Acids Res. 2013 Jan;41(2):978-94. doi: 10.1093/nar/gks1078. Epub 2012 Nov 21.

18.

miRNA repression of translation in vitro takes place during 43S ribosomal scanning.

Ricci EP, Limousin T, Soto-Rifo R, Rubilar PS, Decimo D, Ohlmann T.

Nucleic Acids Res. 2013 Jan 7;41(1):586-98. doi: 10.1093/nar/gks1076. Epub 2012 Nov 17.

19.

Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability.

Mukherjee C, Patil DP, Kennedy BA, Bakthavachalu B, Bundschuh R, Schoenberg DR.

Cell Rep. 2012 Sep 27;2(3):674-84. doi: 10.1016/j.celrep.2012.07.011. Epub 2012 Aug 23.

20.

miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay.

Djuranovic S, Nahvi A, Green R.

Science. 2012 Apr 13;336(6078):237-40. doi: 10.1126/science.1215691.

Supplemental Content

Support Center