Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 41

1.

Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers: a cross-sectional study.

Schubauer-Berigan MK, Dahm MM, Erdely A, Beard JD, Eileen Birch M, Evans DE, Fernback JE, Mercer RR, Bertke SJ, Eye T, de Perio MA.

Part Fibre Toxicol. 2018 May 16;15(1):22. doi: 10.1186/s12989-018-0258-0.

2.

Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans.

Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RC, Fubini B, Kane AB.

Crit Rev Toxicol. 2017 Jan;47(1):1-58. doi: 10.1080/10408444.2016.1206061. Epub 2016 Aug 18. Review.

3.

A Review on the Respiratory System Toxicity of Carbon Nanoparticles.

Pacurari M, Lowe K, Tchounwou PB, Kafoury R.

Int J Environ Res Public Health. 2016 Mar 15;13(3). pii: E325. doi: 10.3390/ijerph13030325. Review.

4.

Applied Nanotoxicology.

Hobson DW, Roberts SM, Shvedova AA, Warheit DB, Hinkley GK, Guy RC.

Int J Toxicol. 2016 Jan-Feb;35(1):5-16. doi: 10.1177/1091581816628484. Review.

5.

Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes.

Shvedova AA, Yanamala N, Kisin ER, Khailullin TO, Birch ME, Fatkhutdinova LM.

PLoS One. 2016 Mar 1;11(3):e0150628. doi: 10.1371/journal.pone.0150628. eCollection 2016.

6.

A critical evaluation of material safety data sheets (MSDSs) for engineered nanomaterials.

Eastlake A, Hodson L, Geraci C, Crawford C.

Chem Health Saf. 2012 Sep-Oct;19(5):1-8.

7.

Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation.

Kuempel ED, Sweeney LM, Morris JB, Jarabek AM.

J Occup Environ Hyg. 2015;12 Suppl 1:S18-40. doi: 10.1080/15459624.2015.1060328. Erratum in: J Occup Environ Hyg. 2018 Apr;15(4):D31.

8.

Development of risk-based nanomaterial groups for occupational exposure control.

Kuempel ED, Castranova V, Geraci CL, Schulte PA.

J Nanopart Res. 2012 Sep;14:1029. Epub 2012 Aug 7.

9.

Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis.

Mishra A, Stueckle TA, Mercer RR, Derk R, Rojanasakul Y, Castranova V, Wang L.

Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L821-33. doi: 10.1152/ajplung.00002.2015. Epub 2015 Aug 21.

10.

Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms.

Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE.

Biomolecules. 2015 Jul 2;5(3):1399-440. doi: 10.3390/biom5031399. Review.

11.

Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells.

Maruyama K, Haniu H, Saito N, Matsuda Y, Tsukahara T, Kobayashi S, Tanaka M, Aoki K, Takanashi S, Okamoto M, Kato H.

Biomed Res Int. 2015;2015:793186. doi: 10.1155/2015/793186. Epub 2015 May 18.

12.

Risk Assessment of the Carbon Nanotube Group.

Nakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, Endoh S, Shimada M, Ogami A, Myojyo T, Oyabu T, Gamo M, Kishimoto A, Igarashi T, Hanai S.

Risk Anal. 2015 Oct;35(10):1940-56. doi: 10.1111/risa.12394. Epub 2015 May 5.

13.

Electronic platform for real-time multi-parametric analysis of cellular behavior post-exposure to single-walled carbon nanotubes.

Eldawud R, Wagner A, Dong C, Rojansakul Y, Zoica Dinu C.

Biosens Bioelectron. 2015 Sep 15;71:269-277. doi: 10.1016/j.bios.2015.04.044. Epub 2015 Apr 15.

14.

Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes.

Chen D, Stueckle TA, Luanpitpong S, Rojanasakul Y, Lu Y, Wang L.

Nanoscale Res Lett. 2015 Jan 27;10:12. doi: 10.1186/s11671-014-0707-0. eCollection 2015.

15.

Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes.

Manke A, Luanpitpong S, Rojanasakul Y.

Occup Med Health Aff. 2014;2. pii: 1000165.

16.

Cytotoxicity and genotoxicity of panel of single- and multiwalled carbon nanotubes: in vitro effects on normal Syrian hamster embryo and immortalized v79 hamster lung cells.

Darne C, Terzetti F, Coulais C, Fontana C, Binet S, Gaté L, Guichard Y.

J Toxicol. 2014;2014:872195. doi: 10.1155/2014/872195. Epub 2014 Dec 8.

17.

The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats.

Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D.

Part Fibre Toxicol. 2014 Nov 20;11:59. doi: 10.1186/s12989-014-0059-z.

18.

Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells.

Lohcharoenkal W, Wang L, Stueckle TA, Park J, Tse W, Dinu CZ, Rojanasakul Y.

Front Physiol. 2014 Jun 12;5:222. doi: 10.3389/fphys.2014.00222. eCollection 2014.

19.

Induction of stem-like cells with malignant properties by chronic exposure of human lung epithelial cells to single-walled carbon nanotubes.

Luanpitpong S, Wang L, Castranova V, Rojanasakul Y.

Part Fibre Toxicol. 2014 May 11;11:22. doi: 10.1186/1743-8977-11-22.

20.

Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris.

Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NR, Brandão HM, Brayner R.

J Nanobiotechnology. 2014 Apr 22;12:15. doi: 10.1186/1477-3155-12-15.

Supplemental Content

Support Center