Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 26

1.

Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika.

da Cruz Ferreira DA, Degener CM, de Almeida Marques-Toledo C, Bendati MM, Fetzer LO, Teixeira CP, Eiras ÁE.

Parasit Vectors. 2017 Feb 13;10(1):78. doi: 10.1186/s13071-017-2025-8.

2.

Navigating the Zika panic.

Grubaugh ND, Andersen KG.

F1000Res. 2016 Aug 4;5:1914. eCollection 2016.

3.

New Paradigms for Virus Detection, Surveillance and Control of Zika Virus Vectors in the Settings of Southeast Asia.

Vythilingam I, Sam JI, Chan YF, Khaw LT, Sulaiman WY.

Front Microbiol. 2016 Sep 13;7:1452. doi: 10.3389/fmicb.2016.01452. eCollection 2016. Review.

4.
5.

Surveillance of dengue vectors using spatio-temporal Bayesian modeling.

Costa AC, Codeço CT, Honório NA, Pereira GR, Pinheiro CF, Nobre AA.

BMC Med Inform Decis Mak. 2015 Nov 13;15:93. doi: 10.1186/s12911-015-0219-6.

6.

Association among house infestation index, dengue incidence, and sociodemographic indicators: surveillance using geographic information system.

Vargas WP, Kawa H, Sabroza PC, Soares VB, Honório NA, de Almeida AS.

BMC Public Health. 2015 Aug 5;15:746. doi: 10.1186/s12889-015-2097-3.

7.

Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil.

Rodrigues Mde M, Marques GR, Serpa LL, Arduino Mde B, Voltolini JC, Barbosa GL, Andrade VR, de Lima VL.

Parasit Vectors. 2015 Feb 19;8:115. doi: 10.1186/s13071-015-0703-y.

8.

Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities.

Pepin KM, Leach CB, Marques-Toledo C, Laass KH, Paixao KS, Luis AD, Hayman DT, Johnson NG, Buhnerkempe MG, Carver S, Grear DA, Tsao K, Eiras AE, Webb CT.

Parasit Vectors. 2015 Feb 15;8:98. doi: 10.1186/s13071-015-0659-y.

9.

Surveillance of Aedes aegypti: comparison of house index with four alternative traps.

Codeço CT, Lima AW, Araújo SC, Lima JB, Maciel-de-Freitas R, Honório NA, Galardo AK, Braga IA, Coelho GE, Valle D.

PLoS Negl Trop Dis. 2015 Feb 10;9(2):e0003475. doi: 10.1371/journal.pntd.0003475. eCollection 2015 Feb.

10.

She's a femme fatale: low-density larval development produces good disease vectors.

Juliano SA, Ribeiro GS, Maciel-de-Freitas R, Castro MG, Codeço C, Lourenço-de-Oliveira R, Lounibos LP.

Mem Inst Oswaldo Cruz. 2014 Dec;109(8):1070-7. doi: 10.1590/0074-02760140455.

11.

Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes.

Degener CM, Ázara TM, Roque RA, Codeço CT, Nobre AA, Ohly JJ, Geier M, Eiras ÁE.

Mem Inst Oswaldo Cruz. 2014 Dec;109(8):1030-40. doi: 10.1590/0074-0276140234. Epub 2014 Dec 9.

12.

Spatiotemporal distribution of dengue vectors & identification of high risk zones in district Sonitpur, Assam, India.

Das M, Gopalakrishnan R, Kumar D, Gayan J, Baruah I, Veer V, Dutta P.

Indian J Med Res. 2014 Aug;140(2):278-84.

13.

Spatio-temporal distribution of dengue and lymphatic filariasis vectors along an altitudinal transect in Central Nepal.

Dhimal M, Gautam I, Kreß A, Müller R, Kuch U.

PLoS Negl Trop Dis. 2014 Jul 31;8(7):e3035. doi: 10.1371/journal.pntd.0003035. eCollection 2014.

14.

A comparison of larval, ovitrap and MosquiTRAP surveillance for Aedes (Stegomyia) aegypti.

Resende MC, Silva IM, Ellis BR, Eiras ÁE.

Mem Inst Oswaldo Cruz. 2013 Dec;108(8):1024-30.

15.

Modeling the non-stationary climate dependent temporal dynamics of Aedes aegypti.

Simões TC, Codeço CT, Nobre AA, Eiras AE.

PLoS One. 2013 Aug 20;8(8):e64773. doi: 10.1371/journal.pone.0064773. eCollection 2013.

16.

An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti.

Mackay AJ, Amador M, Barrera R.

Parasit Vectors. 2013 Aug 6;6(1):225. doi: 10.1186/1756-3305-6-225.

17.

Sustained reduction of the dengue vector population resulting from an integrated control strategy applied in two Brazilian cities.

Regis LN, Acioli RV, Silveira JC Jr, Melo-Santos MA, Souza WV, Ribeiro CM, da Silva JC, Monteiro AM, Oliveira CM, Barbosa RM, Braga C, Rodrigues MA, Silva MG, Ribeiro PJ Jr, Bonat WH, de Castro Medeiros LC, Carvalho MS, Furtado AF.

PLoS One. 2013 Jul 3;8(7):e67682. doi: 10.1371/journal.pone.0067682. Print 2013.

18.

Cost-effectiveness of novel system of mosquito surveillance and control, Brazil.

Pepin KM, Marques-Toledo C, Scherer L, Morais MM, Ellis B, Eiras AE.

Emerg Infect Dis. 2013 Apr;19(4):542-50. doi: 10.3201/eid1904.120117.

19.

Household survey of container-breeding mosquitoes and climatic factors influencing the prevalence of Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia.

Aziz AT, Dieng H, Ahmad AH, Mahyoub JA, Turkistani AM, Mesed H, Koshike S, Satho T, Salmah MC, Ahmad H, Zuharah WF, Ramli AS, Miake F.

Asian Pac J Trop Biomed. 2012 Nov;2(11):849-57. doi: 10.1016/S2221-1691(12)60242-1.

20.

Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in São Paulo, Brazil.

Campos M, Spenassatto C, Lourdes da Graça Macoris M, Paduan Kdos S, Pinto J, Ribolla PE.

Ecol Evol. 2012 Nov;2(11):2794-802. doi: 10.1002/ece3.392. Epub 2012 Oct 9.

Supplemental Content

Support Center