Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of Impatiens balsamina L. on Caenorhabditis elegans.

Jiang HF, Zhuang ZH, Hou BW, Shi BJ, Shu CJ, Chen L, Shi GX, Zhang WM.

Evid Based Complement Alternat Med. 2017;2017:4245830. doi: 10.1155/2017/4245830. Epub 2017 Feb 23.

2.

Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

Luz AL, Meyer JN.

Mitochondrion. 2016 Sep;30:255-64. doi: 10.1016/j.mito.2016.08.014. Epub 2016 Aug 23.

PMID:
27566481
3.

Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans.

Behl M, Rice JR, Smith MV, Co CA, Bridge MF, Hsieh JH, Freedman JH, Boyd WA.

Toxicol Sci. 2016 Dec;154(2):241-252. Epub 2016 Aug 26.

PMID:
27566445
4.

From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.

Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirschey MD, Meyer JN.

Toxicol Sci. 2016 Aug;152(2):349-62. doi: 10.1093/toxsci/kfw093. Epub 2016 May 20. Erratum in: Toxicol Sci. 2016 Nov;154(1):195.

PMID:
27208080
5.

Seahorse Xfe 24 Extracellular Flux Analyzer-Based Analysis of Cellular Respiration in Caenorhabditis elegans.

Luz AL, Smith LL, Rooney JP, Meyer JN.

Curr Protoc Toxicol. 2015 Nov 2;66:25.7.1-15. doi: 10.1002/0471140856.tx2507s66.

6.

Developmental Effects of the ToxCast™ Phase I and Phase II Chemicals in Caenorhabditis elegans and Corresponding Responses in Zebrafish, Rats, and Rabbits.

Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH.

Environ Health Perspect. 2016 May;124(5):586-93. doi: 10.1289/ehp.1409645. Epub 2015 Oct 23.

7.

Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

Luz AL, Rooney JP, Kubik LL, Gonzalez CP, Song DH, Meyer JN.

PLoS One. 2015 Jun 24;10(6):e0130940. doi: 10.1371/journal.pone.0130940. eCollection 2015. Erratum in: PLoS One. 2016 Dec 15;11(12 ):e0168738.

8.

A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains.

Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS, Gerke JP, Kruglyak L.

G3 (Bethesda). 2015 Mar 13;5(5):911-20. doi: 10.1534/g3.115.017178.

9.

Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans.

González-Hunt CP, Leung MC, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN.

PLoS One. 2014 Dec 8;9(12):e114459. doi: 10.1371/journal.pone.0114459. eCollection 2014.

10.

Xenotransplantation models to study the effects of toxicants on human fetal tissues.

Spade DJ, McDonnell EV, Heger NE, Sanders JA, Saffarini CM, Gruppuso PA, De Paepe ME, Boekelheide K.

Birth Defects Res B Dev Reprod Toxicol. 2014 Dec;101(6):410-22. doi: 10.1002/bdrb.21131. Epub 2014 Dec 4. Review.

11.

Molecular basis for antioxidant enzymes in mediating copper detoxification in the nematode Caenorhabditis elegans.

Song S, Zhang X, Wu H, Han Y, Zhang J, Ma E, Guo Y.

PLoS One. 2014 Sep 22;9(9):e107685. doi: 10.1371/journal.pone.0107685. eCollection 2014.

12.

Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans.

Qiao Y, Zhao Y, Wu Q, Sun L, Ruan Q, Chen Y, Wang M, Duan J, Wang D.

PLoS One. 2014 Mar 13;9(3):e91825. doi: 10.1371/journal.pone.0091825. eCollection 2014.

13.

Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism.

Zhuang Z, Zhao Y, Wu Q, Li M, Liu H, Sun L, Gao W, Wang D.

PLoS One. 2014 Jan 21;9(1):e85482. doi: 10.1371/journal.pone.0085482. eCollection 2014.

14.

Comparative toxicogenomic responses of mercuric and methyl-mercury.

McElwee MK, Ho LA, Chou JW, Smith MV, Freedman JH.

BMC Genomics. 2013 Oct 11;14:698. doi: 10.1186/1471-2164-14-698.

15.

Caenorhabditis elegans as a model in developmental toxicology.

Boyd WA, Smith MV, Freedman JH.

Methods Mol Biol. 2012;889:15-24. doi: 10.1007/978-1-61779-867-2_3.

16.

Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals.

Harrington JM, Boyd WA, Smith MV, Rice JR, Freedman JH, Crumbliss AL.

Toxicol Sci. 2012 Sep;129(1):49-56. doi: 10.1093/toxsci/kfs191. Epub 2012 May 28.

17.

Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase β.

Asagoshi K, Lehmann W, Braithwaite EK, Santana-Santos L, Prasad R, Freedman JH, Van Houten B, Wilson SH.

Nucleic Acids Res. 2012 Jan;40(2):670-81. doi: 10.1093/nar/gkr727. Epub 2011 Sep 14.

18.

Comparative toxicology of mercurials in Caenorhabditis elegans.

McElwee MK, Freedman JH.

Environ Toxicol Chem. 2011 Sep;30(9):2135-41. doi: 10.1002/etc.603. Epub 2011 Jul 11.

19.

The Caenorhabiditis elegans model as a reliable tool in neurotoxicology.

Avila D, Helmcke K, Aschner M.

Hum Exp Toxicol. 2012 Mar;31(3):236-43. doi: 10.1177/0960327110392084. Epub 2010 Dec 9. Review.

20.

Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo.

Leung MC, Goldstone JV, Boyd WA, Freedman JH, Meyer JN.

Toxicol Sci. 2010 Dec;118(2):444-53. doi: 10.1093/toxsci/kfq295. Epub 2010 Sep 23.

Supplemental Content

Support Center