Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 65

1.

ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation.

Luo S, Hieu TB, Ma F, Yu Y, Cao Z, Wang M, Wu W, Mao Y, Rose P, Law BY, Zhu YZ.

Sci Rep. 2017 Mar 7;7:43242. doi: 10.1038/srep43242.

2.

LRRK2 inhibitors and their potential in the treatment of Parkinson's disease: current perspectives.

Atashrazm F, Dzamko N.

Clin Pharmacol. 2016 Oct 20;8:177-189. eCollection 2016. Review.

3.

Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors.

Ulke-Lemée A, MacDonald JA.

Pharmaceuticals (Basel). 2010 May 26;3(6):1739-1760. Review.

4.

Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation.

Lobbestael E, Civiero L, De Wit T, Taymans JM, Greggio E, Baekelandt V.

Sci Rep. 2016 Sep 23;6:33897. doi: 10.1038/srep33897.

5.
6.

Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation.

Matikainen-Ankney BA, Kezunovic N, Mesias RE, Tian Y, Williams FM, Huntley GW, Benson DL.

J Neurosci. 2016 Jul 6;36(27):7128-41. doi: 10.1523/JNEUROSCI.3314-15.2016.

7.

Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases.

Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MA, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M.

Elife. 2016 Jan 29;5. pii: e12813. doi: 10.7554/eLife.12813.

8.

LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase.

Choi I, Kim B, Byun JW, Baik SH, Huh YH, Kim JH, Mook-Jung I, Song WK, Shin JH, Seo H, Suh YH, Jou I, Park SM, Kang HC, Joe EH.

Nat Commun. 2015 Sep 14;6:8255. doi: 10.1038/ncomms9255.

9.

An early axonopathy in a hLRRK2(R1441G) transgenic model of Parkinson disease.

Tagliaferro P, Kareva T, Oo TF, Yarygina O, Kholodilov N, Burke RE.

Neurobiol Dis. 2015 Oct;82:359-71. doi: 10.1016/j.nbd.2015.07.009. Epub 2015 Jul 17.

10.

LRRK2 dephosphorylation increases its ubiquitination.

Zhao J, Molitor TP, Langston JW, Nichols RJ.

Biochem J. 2015 Jul 1;469(1):107-20. doi: 10.1042/BJ20141305. Epub 2015 May 5.

11.

Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock-in mice.

Yue M, Hinkle KM, Davies P, Trushina E, Fiesel FC, Christenson TA, Schroeder AS, Zhang L, Bowles E, Behrouz B, Lincoln SJ, Beevers JE, Milnerwood AJ, Kurti A, McLean PJ, Fryer JD, Springer W, Dickson DW, Farrer MJ, Melrose HL.

Neurobiol Dis. 2015 Jun;78:172-95. doi: 10.1016/j.nbd.2015.02.031. Epub 2015 Mar 31.

12.

Tumor necrosis factor disrupts claudin-5 endothelial tight junction barriers in two distinct NF-κB-dependent phases.

Clark PR, Kim RK, Pober JS, Kluger MS.

PLoS One. 2015 Mar 27;10(3):e0120075. doi: 10.1371/journal.pone.0120075. eCollection 2015.

13.

Failure of Y-27632 to improve the culture of adult human adipose-derived stem cells.

Lamas NJ, Serra SC, Salgado AJ, Sousa N.

Stem Cells Cloning. 2015 Jan 7;8:15-26. doi: 10.2147/SCCAA.S66597. eCollection 2015.

14.

Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase.

Pedraza CE, Taylor C, Pereira A, Seng M, Tham CS, Izrael M, Webb M.

ASN Neuro. 2014 Jun 25;6(4). pii: 1759091414538134. doi: 10.1177/1759091414538134.

15.

The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease.

Schapansky J, Nardozzi JD, LaVoie MJ.

Neuroscience. 2015 Aug 27;302:74-88. doi: 10.1016/j.neuroscience.2014.09.049. Epub 2014 Oct 2. Review.

16.

Unique functional and structural properties of the LRRK2 protein ATP-binding pocket.

Liu Z, Galemmo RA Jr, Fraser KB, Moehle MS, Sen S, Volpicelli-Daley LA, DeLucas LJ, Ross LJ, Valiyaveettil J, Moukha-Chafiq O, Pathak AK, Ananthan S, Kezar H, White EL, Gupta V, Maddry JA, Suto MJ, West AB.

J Biol Chem. 2014 Nov 21;289(47):32937-51. doi: 10.1074/jbc.M114.602318. Epub 2014 Sep 16.

17.

Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging.

Longo F, Russo I, Shimshek DR, Greggio E, Morari M.

Neurobiol Dis. 2014 Nov;71:62-73. doi: 10.1016/j.nbd.2014.07.013. Epub 2014 Aug 6.

18.

LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status.

Reynolds A, Doggett EA, Riddle SM, Lebakken CS, Nichols RJ.

Front Mol Neurosci. 2014 Jun 24;7:54. doi: 10.3389/fnmol.2014.00054. eCollection 2014.

19.

Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution.

Mamais A, Chia R, Beilina A, Hauser DN, Hall C, Lewis PA, Cookson MR, Bandopadhyay R.

J Biol Chem. 2014 Aug 1;289(31):21386-400. doi: 10.1074/jbc.M113.528463. Epub 2014 Jun 18.

20.

In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2.

Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, Baekelandt V, Taymans JM.

Front Mol Neurosci. 2014 Jun 3;7:51. doi: 10.3389/fnmol.2014.00051. eCollection 2014.

Supplemental Content

Support Center