Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 61

1.

Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour.

Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC.

J Physiol. 2016 Nov 15;594(22):6443-6462. doi: 10.1113/JP271946.

PMID:
27302606
2.

Thermoregulation under pressure: a role for orexin neurons.

Kuwaki T.

Temperature (Austin). 2015 Jul 15;2(3):379-91. doi: 10.1080/23328940.2015.1066921. Review.

3.

Strategies for targeting primate neural circuits with viral vectors.

El-Shamayleh Y, Ni AM, Horwitz GD.

J Neurophysiol. 2016 Jul 1;116(1):122-34. doi: 10.1152/jn.00087.2016. Review.

PMID:
27052579
4.

Circadian Rhythms, Sleep, and Disorders of Aging.

Mattis J, Sehgal A.

Trends Endocrinol Metab. 2016 Apr;27(4):192-203. doi: 10.1016/j.tem.2016.02.003. Review.

PMID:
26947521
5.

Pedunculopontine arousal system physiology - Deep brain stimulation (DBS).

Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ.

Sleep Sci. 2015 Nov;8(3):153-61. doi: 10.1016/j.slsci.2015.09.001. Review.

6.

Sleep, recovery, and metaregulation: explaining the benefits of sleep.

Vyazovskiy VV.

Nat Sci Sleep. 2015 Dec 17;7:171-84. doi: 10.2147/NSS.S54036.

7.

The Neurobiology of Sleep and Wakefulness.

Schwartz MD, Kilduff TS.

Psychiatr Clin North Am. 2015 Dec;38(4):615-44. doi: 10.1016/j.psc.2015.07.002. Review.

8.

Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states.

Graebner AK, Iyer M, Carter ME.

Front Syst Neurosci. 2015 Aug 4;9:111. doi: 10.3389/fnsys.2015.00111. Review.

9.

Silencing of Cholinergic Basal Forebrain Neurons Using Archaerhodopsin Prolongs Slow-Wave Sleep in Mice.

Shi YF, Han Y, Su YT, Yang JH, Yu YQ.

PLoS One. 2015 Jul 7;10(7):e0130130. doi: 10.1371/journal.pone.0130130. Erratum in: PLoS One. 2015;10(7):e0134421.

10.

A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition.

Sorooshyari S, Huerta R, de Lecea L.

Front Neurol. 2015 Feb 26;6:32. doi: 10.3389/fneur.2015.00032. Review.

11.

To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance.

Brown JA, Woodworth HL, Leinninger GM.

Front Syst Neurosci. 2015 Feb 18;9:9. doi: 10.3389/fnsys.2015.00009. Review.

12.

Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses.

Bonnavion P, Jackson AC, Carter ME, de Lecea L.

Nat Commun. 2015 Feb 19;6:6266. doi: 10.1038/ncomms7266.

13.

Decoding neural circuits that control compulsive sucrose seeking.

Nieh EH, Matthews GA, Allsop SA, Presbrey KN, Leppla CA, Wichmann R, Neve R, Wildes CP, Tye KM.

Cell. 2015 Jan 29;160(3):528-41. doi: 10.1016/j.cell.2015.01.003.

14.

Optogenetic control of hypocretin (orexin) neurons and arousal circuits.

de Lecea L.

Curr Top Behav Neurosci. 2015;25:367-78. doi: 10.1007/7854_2014_364. Review.

15.

Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.

Laxpati NG, Mahmoudi B, Gutekunst CA, Newman JP, Zeller-Townson R, Gross RE.

Front Neuroeng. 2014 Oct 29;7:40. doi: 10.3389/fneng.2014.00040.

16.

Basal forebrain cholinergic modulation of sleep transitions.

Irmak SO, de Lecea L.

Sleep. 2014 Dec 1;37(12):1941-51. doi: 10.5665/sleep.4246.

17.
18.

Optogenetic control of cardiomyocytes via viral delivery.

Ambrosi CM, Entcheva E.

Methods Mol Biol. 2014;1181:215-28. doi: 10.1007/978-1-4939-1047-2_19.

19.

Hypocretin (orexin) regulation of sleep-to-wake transitions.

de Lecea L, Huerta R.

Front Pharmacol. 2014 Feb 12;5:16. doi: 10.3389/fphar.2014.00016. Review.

20.

Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice.

Etori K, Saito YC, Tsujino N, Sakurai T.

Front Neurosci. 2014 Jan 31;8:8. doi: 10.3389/fnins.2014.00008.

Items per page

Supplemental Content

Support Center