Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 19

1.

The impact of high and low dose ionising radiation on the central nervous system.

Betlazar C, Middleton RJ, Banati RB, Liu GJ.

Redox Biol. 2016 Oct;9:144-156. doi: 10.1016/j.redox.2016.08.002. Epub 2016 Aug 10. Review.

2.

Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.

Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ES.

Physiol Rev. 2016 Jan;96(1):307-64. doi: 10.1152/physrev.00010.2014. Review.

3.

Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

Zanni G, Di Martino E, Omelyanenko A, Andäng M, Delle U, Elmroth K, Blomgren K.

Oncotarget. 2015 Nov 10;6(35):37083-97. doi: 10.18632/oncotarget.5191.

4.

Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53.

Barone E, Cenini G, Di Domenico F, Noel T, Wang C, Perluigi M, St Clair DK, Butterfield DA.

J Neurosci Res. 2015 Nov;93(11):1728-39. doi: 10.1002/jnr.23627. Epub 2015 Aug 6.

5.

Oxidative stress and redox regulation on hippocampal-dependent cognitive functions.

Huang TT, Leu D, Zou Y.

Arch Biochem Biophys. 2015 Jun 15;576:2-7. doi: 10.1016/j.abb.2015.03.014. Epub 2015 Mar 20. Review.

6.

Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction.

Parihar VK, Allen BD, Tran KK, Chmielewski NN, Craver BM, Martirosian V, Morganti JM, Rosi S, Vlkolinsky R, Acharya MM, Nelson GA, Allen AR, Limoli CL.

Antioxid Redox Signal. 2015 Jan 1;22(1):78-91. doi: 10.1089/ars.2014.5929.

7.

Defining functional changes in the brain caused by targeted stereotaxic radiosurgery.

Parihar VK, Acharya MM, Roa DE, Bosch O, Christie LA, Limoli CL.

Transl Cancer Res. 2014 Apr 1;3(2):124-137.

8.

Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications.

Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE.

J Vasc Res. 2013;50(6):445-57. doi: 10.1159/000354227. Epub 2013 Oct 1. Review.

9.

Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases.

Holley AK, Miao L, St Clair DK, St Clair WH.

Antioxid Redox Signal. 2014 Apr 1;20(10):1567-89. doi: 10.1089/ars.2012.5000. Epub 2014 Feb 14. Review.

10.

Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation.

Tseng BP, Lan ML, Tran KK, Acharya MM, Giedzinski E, Limoli CL.

Redox Biol. 2013 Jan 19;1:153-62. doi: 10.1016/j.redox.2013.01.008. eCollection 2013.

11.
12.

Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation.

Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, Limoli CL.

Antioxid Redox Signal. 2014 Mar 20;20(9):1410-22. doi: 10.1089/ars.2012.5134. Epub 2013 Aug 12.

13.

Paradoxical relationship between Mn superoxide dismutase deficiency and radiation-induced cognitive defects.

Corniola R, Zou Y, Leu D, Fike JR, Huang TT.

PLoS One. 2012;7(11):e49367. doi: 10.1371/journal.pone.0049367. Epub 2012 Nov 8.

14.

Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency.

Huang TT, Zou Y, Corniola R.

Semin Cell Dev Biol. 2012 Sep;23(7):738-44. doi: 10.1016/j.semcdb.2012.04.003. Epub 2012 Apr 12. Review.

15.

Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE.

PLoS One. 2012;7(1):e30444. doi: 10.1371/journal.pone.0030444. Epub 2012 Jan 18.

16.

Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction.

Acharya MM, Christie LA, Lan ML, Giedzinski E, Fike JR, Rosi S, Limoli CL.

Cancer Res. 2011 Jul 15;71(14):4834-45. doi: 10.1158/0008-5472.CAN-11-0027. Epub 2011 Jul 14.

17.

Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination.

Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee MH, Bianchet MA, Cotter R, Song H, Nath A.

Mol Brain. 2011 Jun 27;4:28. doi: 10.1186/1756-6606-4-28.

18.

Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress.

Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, Gius D.

Aging (Albany NY). 2011 Feb;3(2):102-7. Review.

19.

Modifying radiation damage.

Kim K, McBride WH.

Curr Drug Targets. 2010 Nov;11(11):1352-65. Review.

Supplemental Content

Support Center