Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38

1.

A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway.

Salašová A, Yokota C, Potěšil D, Zdráhal Z, Bryja V, Arenas E.

Mol Neurodegener. 2017 Jul 11;12(1):54. doi: 10.1186/s13024-017-0193-9.

2.

Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling.

Berwick DC, Javaheri B, Wetzel A, Hopkinson M, Nixon-Abell J, Grannò S, Pitsillides AA, Harvey K.

Mol Neurodegener. 2017 Jan 19;12(1):9. doi: 10.1186/s13024-017-0153-4.

3.

Back to the tubule: microtubule dynamics in Parkinson's disease.

Pellegrini L, Wetzel A, Grannó S, Heaton G, Harvey K.

Cell Mol Life Sci. 2017 Feb;74(3):409-434. doi: 10.1007/s00018-016-2351-6. Epub 2016 Sep 6. Review.

4.

Protective LRRK2 R1398H Variant Enhances GTPase and Wnt Signaling Activity.

Nixon-Abell J, Berwick DC, Grannó S, Spain VA, Blackstone C, Harvey K.

Front Mol Neurosci. 2016 Mar 8;9:18. doi: 10.3389/fnmol.2016.00018. eCollection 2016.

5.

Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity.

Shu Y, Ming J, Zhang P, Wang Q, Jiao F, Tian B.

PLoS One. 2016 Mar 1;11(3):e0149739. doi: 10.1371/journal.pone.0149739. eCollection 2016.

6.

There's Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases.

Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC.

Trends Neurosci. 2016 Mar;39(3):146-57. doi: 10.1016/j.tins.2016.01.008. Epub 2016 Feb 15. Review.

7.

Cellular processes associated with LRRK2 function and dysfunction.

Wallings R, Manzoni C, Bandopadhyay R.

FEBS J. 2015 Aug;282(15):2806-26. doi: 10.1111/febs.13305. Epub 2015 May 9. Review.

8.

Evaluating LRRK2 genetic variants with unclear pathogenicity.

Refai FS, Ng SH, Tan EK.

Biomed Res Int. 2015;2015:678701. doi: 10.1155/2015/678701. Epub 2015 Mar 2.

9.

Deficient Wnt signalling triggers striatal synaptic degeneration and impaired motor behaviour in adult mice.

Galli S, Lopes DM, Ammari R, Kopra J, Millar SE, Gibb A, Salinas PC.

Nat Commun. 2014 Oct 16;5:4992. doi: 10.1038/ncomms5992.

10.

The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease.

Schapansky J, Nardozzi JD, LaVoie MJ.

Neuroscience. 2015 Aug 27;302:74-88. doi: 10.1016/j.neuroscience.2014.09.049. Epub 2014 Oct 2. Review.

11.

Interaction of LRRK2 with kinase and GTPase signaling cascades.

Boon JY, Dusonchet J, Trengrove C, Wolozin B.

Front Mol Neurosci. 2014 Jul 9;7:64. doi: 10.3389/fnmol.2014.00064. eCollection 2014. Review.

12.

Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications.

Rudenko IN, Cookson MR.

Neurotherapeutics. 2014 Oct;11(4):738-50. doi: 10.1007/s13311-014-0284-z. Review.

13.

Structural biology of the LRRK2 GTPase and kinase domains: implications for regulation.

Gilsbach BK, Kortholt A.

Front Mol Neurosci. 2014 May 5;7:32. doi: 10.3389/fnmol.2014.00032. eCollection 2014. Review.

14.

A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity.

Dusonchet J, Li H, Guillily M, Liu M, Stafa K, Derada Troletti C, Boon JY, Saha S, Glauser L, Mamais A, Citro A, Youmans KL, Liu L, Schneider BL, Aebischer P, Yue Z, Bandopadhyay R, Glicksman MA, Moore DJ, Collins JJ, Wolozin B.

Hum Mol Genet. 2014 Sep 15;23(18):4887-905. doi: 10.1093/hmg/ddu202. Epub 2014 May 2.

15.

Pathway for Parkinson disease.

Hoang QQ.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2402-3. doi: 10.1073/pnas.1324284111. Epub 2014 Feb 7. No abstract available.

16.

A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation.

Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Blanca Ramírez M, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K.

J Biol Chem. 2014 Jan 10;289(2):895-908. doi: 10.1074/jbc.M113.507913. Epub 2013 Nov 25.

17.

ERKed by LRRK2: a cell biological perspective on hereditary and sporadic Parkinson's disease.

Verma M, Steer EK, Chu CT.

Biochim Biophys Acta. 2014 Aug;1842(8):1273-81. doi: 10.1016/j.bbadis.2013.11.005. Epub 2013 Nov 10. Review.

18.

The regulation and deregulation of Wnt signaling by PARK genes in health and disease.

Berwick DC, Harvey K.

J Mol Cell Biol. 2014 Feb;6(1):3-12. doi: 10.1093/jmcb/mjt037. Epub 2013 Oct 9. Review.

19.

LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.

Yun HJ, Park J, Ho DH, Kim H, Kim CH, Oh H, Ga I, Seo H, Chang S, Son I, Seol W.

Exp Mol Med. 2013 Aug 16;45:e36. doi: 10.1038/emm.2013.68.

20.

LRRK2: cause, risk, and mechanism.

Paisán-Ruiz C, Lewis PA, Singleton AB.

J Parkinsons Dis. 2013;3(2):85-103. doi: 10.3233/JPD-130192. Review.

Supplemental Content

Support Center