Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 52

1.

Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage.

Wiland E, Fraczek M, Olszewska M, Kurpisz M.

Sci Rep. 2016 Aug 25;6:31614. doi: 10.1038/srep31614.

2.

Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells.

Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, Bartolomei MS, Coutifaris C, Garcia BA, Berger SL.

Epigenetics Chromatin. 2016 Jun 21;9:24. doi: 10.1186/s13072-016-0072-6. eCollection 2016.

3.

Nuclease Footprints in Sperm Project Past and Future Chromatin Regulatory Events.

Johnson GD, Jodar M, Pique-Regi R, Krawetz SA.

Sci Rep. 2016 May 17;6:25864. doi: 10.1038/srep25864.

4.

Recent knowledge concerning mammalian sperm chromatin organization and its potential weaknesses when facing oxidative challenge.

Noblanc A, Kocer A, Drevet JR.

Basic Clin Androl. 2014 Apr 1;24:6. doi: 10.1186/2051-4190-24-6. eCollection 2014.

5.

Impact of sperm DNA chromatin in the clinic.

Ioannou D, Miller D, Griffin DK, Tempest HG.

J Assist Reprod Genet. 2016 Feb;33(2):157-66. doi: 10.1007/s10815-015-0624-x. Epub 2015 Dec 17.

6.

Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility.

Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A.

Physiol Rev. 2016 Jan;96(1):55-97. doi: 10.1152/physrev.00017.2015. Review.

PMID:
26582516
7.

Environmental Susceptibility of the Sperm Epigenome During Windows of Male Germ Cell Development.

Wu H, Hauser R, Krawetz SA, Pilsner JR.

Curr Environ Health Rep. 2015 Dec;2(4):356-66. doi: 10.1007/s40572-015-0067-7.

8.

The role of epigenetics in spermatogenesis.

Güneş S, Kulaç T.

Turk J Urol. 2013 Sep;39(3):181-7. doi: 10.5152/tud.2013.037. Review.

9.

Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions.

Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, Méndez-Catalá CF, Kang S, Suzuki T, Kosaka-Suzuki N, Robinson S, Nagarajan V, Ye Z, Boukaba A, Rasko JE, Strunnikov AV, Loukinov D, Ren B, Lobanenkov VV.

Genome Biol. 2015 Aug 14;16:161. doi: 10.1186/s13059-015-0736-8.

10.

Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression.

Terashima M, Barbour S, Ren J, Yu W, Han Y, Muegge K.

Epigenetics. 2015;10(9):861-71. doi: 10.1080/15592294.2015.1075691.

11.

Chromatin and extracellular vesicle associated sperm RNAs.

Johnson GD, Mackie P, Jodar M, Moskovtsev S, Krawetz SA.

Nucleic Acids Res. 2015 Aug 18;43(14):6847-59. doi: 10.1093/nar/gkv591. Epub 2015 Jun 13.

12.

Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility.

Castillo J, Estanyol JM, Ballescá JL, Oliva R.

Asian J Androl. 2015 Jul-Aug;17(4):601-9. doi: 10.4103/1008-682X.153302. Review.

13.

The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes.

Pantano L, Jodar M, Bak M, Ballescà JL, Tommerup N, Oliva R, Vavouri T.

RNA. 2015 Jun;21(6):1085-95. doi: 10.1261/rna.046482.114. Epub 2015 Apr 22.

14.

Methylation analysis of histone H4K12ac-associated promoters in sperm of healthy donors and subfertile patients.

Vieweg M, Dvorakova-Hortova K, Dudkova B, Waliszewski P, Otte M, Oels B, Hajimohammad A, Turley H, Schorsch M, Schuppe HC, Weidner W, Steger K, Paradowska-Dogan A.

Clin Epigenetics. 2015 Mar 19;7:31. doi: 10.1186/s13148-015-0058-4. eCollection 2015.

15.

Characterization of BRD4 during mammalian postmeiotic sperm development.

Bryant JM, Donahue G, Wang X, Meyer-Ficca M, Luense LJ, Weller AH, Bartolomei MS, Blobel GA, Meyer RG, Garcia BA, Berger SL.

Mol Cell Biol. 2015 Apr;35(8):1433-48. doi: 10.1128/MCB.01328-14. Epub 2015 Feb 17.

16.

Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development.

Yassine S, Escoffier J, Martinez G, Coutton C, Karaouzène T, Zouari R, Ravanat JL, Metzler-Guillemain C, Lee HC, Fissore R, Hennebicq S, Ray PF, Arnoult C.

Mol Hum Reprod. 2015 Feb;21(2):169-85. doi: 10.1093/molehr/gau099. Epub 2014 Oct 29.

17.

Sperm epigenomics: challenges and opportunities.

Casas E, Vavouri T.

Front Genet. 2014 Sep 18;5:330. doi: 10.3389/fgene.2014.00330. eCollection 2014. Review.

18.
19.

Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT.

PLoS Genet. 2014 Jul 10;10(7):e1004458. doi: 10.1371/journal.pgen.1004458. eCollection 2014 Jul.

20.

High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm.

Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG, Rando OJ.

Dev Cell. 2014 Jul 14;30(1):11-22. doi: 10.1016/j.devcel.2014.05.024. Epub 2014 Jul 3.

Items per page

Supplemental Content

Write to the Help Desk