Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Targeted Exome Sequencing of Congenital Cataracts Related Genes: Broadening the Mutation Spectrum and Genotype-Phenotype Correlations in 27 Chinese Han Families.

Zhai Y, Li J, Yu W, Zhu S, Yu Y, Wu M, Sun G, Gong X, Yao K.

Sci Rep. 2017 Apr 27;7(1):1219. doi: 10.1038/s41598-017-01182-9.

2.

Multiple Aggregation Pathways in Human γS-Crystallin and Its Aggregation-Prone G18V Variant.

Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW.

Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2397-2405. doi: 10.1167/iovs.16-20621.

3.

Structural study of the G57W mutant of human gamma-S-crystallin, associated with congenital cataract.

Khan I, Chandani S, Balasubramanian D.

Mol Vis. 2016 Jul 14;22:771-82. eCollection 2016.

4.

Single-molecule Force Spectroscopy Reveals the Calcium Dependence of the Alternative Conformations in the Native State of a βγ-Crystallin Protein.

Scholl ZN, Li Q, Yang W, Marszalek PE.

J Biol Chem. 2016 Aug 26;291(35):18263-75. doi: 10.1074/jbc.M116.729525. Epub 2016 Jul 4.

PMID:
27378818
5.

Nuclear Magnetic Resonance Structure of a Major Lens Protein, Human γC-Crystallin: Role of the Dipole Moment in Protein Solubility.

Dixit K, Pande A, Pande J, Sarma SP.

Biochemistry. 2016 Jun 7;55(22):3136-49. doi: 10.1021/acs.biochem.6b00359. Epub 2016 May 23.

6.

Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells.

Slingsby C, Wistow GJ.

Prog Biophys Mol Biol. 2014 Jul;115(1):52-67. doi: 10.1016/j.pbiomolbio.2014.02.006. Epub 2014 Feb 28. Review.

7.

An increase in phosphorylation and truncation of crystallin with the progression of cataracts.

Lin HJ, Lai CC, Huang SY, Hsu WY, Tsai FJ.

Curr Ther Res Clin Exp. 2013 Jun;74:9-15. doi: 10.1016/j.curtheres.2012.10.003.

8.

Exploring the aggregation propensity of γS-crystallin protein variants using two-dimensional spectroscopic tools.

Jiang J, Golchert KJ, Kingsley CN, Brubaker WD, Martin RW, Mukamel S.

J Phys Chem B. 2013 Nov 21;117(46):14294-301. doi: 10.1021/jp408000k. Epub 2013 Nov 12.

9.

Preferential and specific binding of human αB-crystallin to a cataract-related variant of γS-crystallin.

Kingsley CN, Brubaker WD, Markovic S, Diehl A, Brindley AJ, Oschkinat H, Martin RW.

Structure. 2013 Dec 3;21(12):2221-7. doi: 10.1016/j.str.2013.09.017. Epub 2013 Oct 31.

10.

Structural integrity of the Greek key motif in βγ-crystallins is vital for central eye lens transparency.

Vendra VP, Agarwal G, Chandani S, Talla V, Srinivasan N, Balasubramanian D.

PLoS One. 2013 Aug 6;8(8):e70336. doi: 10.1371/journal.pone.0070336. Print 2013.

11.

Structural analysis of the mutant protein D26G of human γS-crystallin, associated with Coppock cataract.

Karri S, Kasetti RB, Vendra VP, Chandani S, Balasubramanian D.

Mol Vis. 2013 Jun 5;19:1231-7. Print 2013.

12.

The mutation V42M distorts the compact packing of the human gamma-S-crystallin molecule, resulting in congenital cataract.

Vendra VP, Chandani S, Balasubramanian D.

PLoS One. 2012;7(12):e51401. doi: 10.1371/journal.pone.0051401. Epub 2012 Dec 21.

13.
14.

Protein misfolding and aggregation in cataract disease and prospects for prevention.

Moreau KL, King JA.

Trends Mol Med. 2012 May;18(5):273-82. doi: 10.1016/j.molmed.2012.03.005. Epub 2012 Apr 19. Review.

15.

Separating instability from aggregation propensity in γS-crystallin variants.

Brubaker WD, Freites JA, Golchert KJ, Shapiro RA, Morikis V, Tobias DJ, Martin RW.

Biophys J. 2011 Jan 19;100(2):498-506. doi: 10.1016/j.bpj.2010.12.3691.

16.

Characterization of a transient unfolding intermediate in a core mutant of γS-crystallin.

Mahler B, Doddapaneni K, Kleckner I, Yuan C, Wistow G, Wu Z.

J Mol Biol. 2011 Jan 21;405(3):840-50. doi: 10.1016/j.jmb.2010.11.005. Epub 2010 Nov 23.

Supplemental Content

Support Center