Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

The Disulfide Bond, but Not Zinc or Dimerization, Controls Initiation and Seeded Growth in Amyotrophic Lateral Sclerosis-linked Cu,Zn Superoxide Dismutase (SOD1) Fibrillation.

Chattopadhyay M, Nwadibia E, Strong CD, Gralla EB, Valentine JS, Whitelegge JP.

J Biol Chem. 2015 Dec 18;290(51):30624-36. doi: 10.1074/jbc.M115.666503. Epub 2015 Oct 28.

2.

ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity.

Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K.

Am J Physiol Heart Circ Physiol. 2015 Oct;309(8):H1271-80. doi: 10.1152/ajpheart.00517.2014. Epub 2015 Aug 7.

3.

The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme.

Lartigue A, Burlat B, Coutard B, Chaspoul F, Claverie JM, Abergel C.

J Virol. 2015 Jan;89(1):824-32. doi: 10.1128/JVI.02588-14. Epub 2014 Oct 29.

4.

A primary role for disulfide formation in the productive folding of prokaryotic Cu,Zn-superoxide dismutase.

Sakurai Y, Anzai I, Furukawa Y.

J Biol Chem. 2014 Jul 18;289(29):20139-49. doi: 10.1074/jbc.M114.567677. Epub 2014 Jun 10.

5.

Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis.

Vehviläinen P, Koistinaho J, Gundars G.

Front Cell Neurosci. 2014 May 9;8:126. doi: 10.3389/fncel.2014.00126. eCollection 2014 May 9. Review.

6.

Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.

Gleason JE, Galaleldeen A, Peterson RL, Taylor AB, Holloway SP, Waninger-Saroni J, Cormack BP, Cabelli DE, Hart PJ, Culotta VC.

Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5866-71. doi: 10.1073/pnas.1400137111. Epub 2014 Apr 7.

7.

Superoxide dismutases and superoxide reductases.

Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS.

Chem Rev. 2014 Apr 9;114(7):3854-918. doi: 10.1021/cr4005296. Epub 2014 Apr 1. Review. No abstract available.

8.

YCF1-mediated cadmium resistance in yeast is dependent on copper metabolism and antioxidant enzymes.

Wei W, Smith N, Wu X, Kim H, Seravalli J, Khalimonchuk O, Lee J.

Antioxid Redox Signal. 2014 Oct 1;21(10):1475-89. doi: 10.1089/ars.2013.5436. Epub 2014 Feb 25.

9.
10.

Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes.

Pope CR, De Feo CJ, Unger VM.

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20491-6. doi: 10.1073/pnas.1309820110. Epub 2013 Dec 2.

11.

Yeast copper-zinc superoxide dismutase can be activated in the absence of its copper chaperone.

Sea KW, Sheng Y, Lelie HL, Kane Barnese L, Durazo A, Valentine JS, Gralla EB.

J Biol Inorg Chem. 2013 Dec;18(8):985-92. doi: 10.1007/s00775-013-1047-8. Epub 2013 Sep 24.

12.

Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

Gleason JE, Li CX, Odeh HM, Culotta VC.

J Biol Inorg Chem. 2014 Jun;19(4-5):595-603. doi: 10.1007/s00775-013-1045-x. Epub 2013 Sep 17.

13.

SOD1 integrates signals from oxygen and glucose to repress respiration.

Reddi AR, Culotta VC.

Cell. 2013 Jan 17;152(1-2):224-35. doi: 10.1016/j.cell.2012.11.046.

14.

An expanding range of functions for the copper chaperone/antioxidant protein Atox1.

Hatori Y, Lutsenko S.

Antioxid Redox Signal. 2013 Sep 20;19(9):945-57. doi: 10.1089/ars.2012.5086. Epub 2013 Feb 6. Review.

15.

Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS).

Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino JT, Zovo K.

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13555-60. doi: 10.1073/pnas.1207493109. Epub 2012 Aug 6.

16.

Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.

Bouldin SD, Darch MA, Hart PJ, Outten CE.

Biochem J. 2012 Aug 15;446(1):59-67. doi: 10.1042/BJ20120075.

17.

Functional partnership of the copper export machinery and glutathione balance in human cells.

Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S.

J Biol Chem. 2012 Aug 3;287(32):26678-87. doi: 10.1074/jbc.M112.381178. Epub 2012 May 30.

18.

Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis.

Huang CH, Kuo WY, Weiss C, Jinn TL.

Plant Physiol. 2012 Feb;158(2):737-46. doi: 10.1104/pp.111.190223. Epub 2011 Dec 20.

19.

Post-translational modification of Cu/Zn superoxide dismutase under anaerobic conditions.

Leitch JM, Li CX, Baron JA, Matthews LM, Cao X, Hart PJ, Culotta VC.

Biochemistry. 2012 Jan 17;51(2):677-85. doi: 10.1021/bi201353y. Epub 2012 Jan 5.

20.

Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.

Marino SM, Li Y, Fomenko DE, Agisheva N, Cerny RL, Gladyshev VN.

Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.

Supplemental Content

Support Center