Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 39

1.

Individual Drusen Segmentation and Repeatability and Reproducibility of Their Automated Quantification in Optical Coherence Tomography Images.

de Sisternes L, Jonna G, Greven MA, Chen Q, Leng T, Rubin DL.

Transl Vis Sci Technol. 2017 Feb 28;6(1):12. doi: 10.1167/tvst.6.1.12. eCollection 2017 Feb.

2.

Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study.

Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, Schuman JS, Sehi M, Chopra V, Huang D; Advanced Imaging for Glaucoma Study Group.

Am J Ophthalmol. 2016 Dec;172:94-103. doi: 10.1016/j.ajo.2016.09.015. Epub 2016 Sep 17.

PMID:
27651070
3.

Visual Prognosis of Eyes Recovering From Macular Hole Surgery Through Automated Quantitative Analysis of Spectral-Domain Optical Coherence Tomography (SD-OCT) Scans.

de Sisternes L, Hu J, Rubin DL, Leng T.

Invest Ophthalmol Vis Sci. 2015 Jul;56(8):4631-43. doi: 10.1167/iovs.14-16344.

4.

Thickness mapping of eleven retinal layers segmented using the diffusion maps method in normal eyes.

Kafieh R, Rabbani H, Hajizadeh F, Abramoff MD, Sonka M.

J Ophthalmol. 2015;2015:259123. doi: 10.1155/2015/259123. Epub 2015 Apr 19.

5.

Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.

Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S.

Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.

6.

Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images.

Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S.

Biomed Opt Express. 2014 Sep 12;5(10):3568-77. doi: 10.1364/BOE.5.003568. eCollection 2014 Oct 1.

7.

Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography.

Kawagoe H, Ishida S, Aramaki M, Sakakibara Y, Omoda E, Kataura H, Nishizawa N.

Biomed Opt Express. 2014 Feb 26;5(3):932-43. doi: 10.1364/BOE.5.000932. eCollection 2014 Mar 1.

8.

Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss.

Koprowski R, Rzendkowski M, Wróbel Z.

Biomed Eng Online. 2014 Feb 14;13:16. doi: 10.1186/1475-925X-13-16.

9.

Peripapillary retinal thickness maps in the evaluation of glaucoma patients: a novel concept.

Yi K, Mujat M, Sun W, Park BH, de Boer JF, Chen TC.

ISRN Ophthalmol. 2011 Sep 7;2011:146813. doi: 10.5402/2011/146813. eCollection 2011.

10.

A review of algorithms for segmentation of optical coherence tomography from retina.

Kafieh R, Rabbani H, Kermani S.

J Med Signals Sens. 2013 Jan;3(1):45-60. Review.

11.

Optical tecnology developments in biomedicine: history, current and future.

Nioka S, Chen Y.

Transl Med UniSa. 2011 Oct 17;1:51-150. Print 2011 Sep.

12.

Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

Kafieh R, Rabbani H, Abramoff MD, Sonka M.

Med Image Anal. 2013 Dec;17(8):907-28. doi: 10.1016/j.media.2013.05.006. Epub 2013 Jun 11.

13.

Reduction of thickness of ganglion cell complex after internal limiting membrane peeling during vitrectomy for idiopathic macular hole.

Baba T, Yamamoto S, Kimoto R, Oshitari T, Sato E.

Eye (Lond). 2012 Sep;26(9):1173-80. doi: 10.1038/eye.2012.170. Epub 2012 Aug 17.

14.

Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images.

Pachiyappan A, Das UN, Murthy TV, Tatavarti R.

Lipids Health Dis. 2012 Jun 13;11:73. doi: 10.1186/1476-511X-11-73.

15.

Automated segmentation of intramacular layers in Fourier domain optical coherence tomography structural images from normal subjects.

Zhang X, Yousefi S, An L, Wang RK.

J Biomed Opt. 2012 Apr;17(4):046011. doi: 10.1117/1.JBO.17.4.046011.

16.

Wavelet denoising of multiframe optical coherence tomography data.

Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP.

Biomed Opt Express. 2012 Mar 1;3(3):572-89. doi: 10.1364/BOE.3.000572. Epub 2012 Feb 22.

17.

Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region.

Ishida S, Nishizawa N.

Biomed Opt Express. 2012 Feb 1;3(2):282-94. doi: 10.1364/BOE.3.000282. Epub 2012 Jan 11.

18.

Diagnostic capability of spectral-domain optical coherence tomography for glaucoma.

Wu H, de Boer JF, Chen TC.

Am J Ophthalmol. 2012 May;153(5):815-826.e2. doi: 10.1016/j.ajo.2011.09.032. Epub 2012 Jan 20.

19.

Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model.

Kajić V, Esmaeelpour M, Považay B, Marshall D, Rosin PL, Drexler W.

Biomed Opt Express. 2012 Jan 1;3(1):86-103. doi: 10.1364/BOE.3.000086. Epub 2011 Dec 12.

20.

Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa.

Yang Q, Reisman CA, Chan K, Ramachandran R, Raza A, Hood DC.

Biomed Opt Express. 2011 Sep 1;2(9):2493-503. doi: 10.1364/BOE.2.002493. Epub 2011 Aug 1.

Supplemental Content

Support Center