Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 55

1.

Macular thickness in healthy Saudi adults. A spectral-domain optical coherence tomography study.

Al-Zamil WM, Al-Zwaidi FM, Yassin SA.

Saudi Med J. 2017 Jan;38(1):63-69. doi: 10.15537/smj.2017.1.17565.

2.

EXPLORING PHOTORECEPTOR REFLECTIVITY THROUGH MULTIMODAL IMAGING OF OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION.

Litts KM, Wang X, Clark ME, Owsley C, Freund KB, Curcio CA, Zhang Y.

Retina. 2017 May;37(5):978-988. doi: 10.1097/IAE.0000000000001265.

PMID:
27584549
3.

Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation.

Fuchs S, Rödel C, Blinne A, Zastrau U, Wünsche M, Hilbert V, Glaser L, Viefhaus J, Frumker E, Corkum P, Förster E, Paulus GG.

Sci Rep. 2016 Feb 10;6:20658. doi: 10.1038/srep20658.

4.

Master slave en-face OCT/SLO.

Bradu A, Kapinchev K, Barnes F, Podoleanu A.

Biomed Opt Express. 2015 Aug 27;6(9):3655-69. doi: 10.1364/BOE.6.003655. eCollection 2015 Sep 1.

5.

Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography.

Eberle MM, Hsu MS, Rodriguez CL, Szu JI, Oliveira MC, Binder DK, Park BH.

Biomed Opt Express. 2015 Apr 22;6(5):1812-27. doi: 10.1364/BOE.6.001812. eCollection 2015 May 1.

6.

Line-field parallel swept source MHz OCT for structural and functional retinal imaging.

Fechtig DJ, Grajciar B, Schmoll T, Blatter C, Werkmeister RM, Drexler W, Leitgeb RA.

Biomed Opt Express. 2015 Feb 4;6(3):716-35. doi: 10.1364/BOE.6.000716. eCollection 2015 Mar 1.

7.

Progress on Developing Adaptive Optics-Optical Coherence Tomography for In Vivo Retinal Imaging: Monitoring and Correction of Eye Motion Artifacts.

Zawadzki RJ, Capps AG, Kim DY, Panorgias A, Stevenson SB, Hamann B, Werner JS.

IEEE J Sel Top Quantum Electron. 2014 Mar;20(2). pii: 7100912.

8.

Quantitative assessment of oral mucosa and labial minor salivary glands in patients with Sjögren's syndrome using swept source OCT.

Grulkowski I, Nowak JK, Karnowski K, Zebryk P, Puszczewicz M, Walkowiak J, Wojtkowski M.

Biomed Opt Express. 2013 Dec 16;5(1):259-74. doi: 10.1364/BOE.5.000259. eCollection 2013 Dec 16.

9.

Dual-band Fourier domain optical coherence tomography with depth-related compensations.

Zhang M, Ma L, Yu P.

Biomed Opt Express. 2013 Dec 10;5(1):167-82. doi: 10.1364/BOE.5.000167. eCollection 2013 Dec 10.

10.

Optical tecnology developments in biomedicine: history, current and future.

Nioka S, Chen Y.

Transl Med UniSa. 2011 Oct 17;1:51-150. Print 2011 Sep.

11.

High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth.

An L, Li P, Lan G, Malchow D, Wang RK.

Biomed Opt Express. 2013 Feb 1;4(2):245-59. doi: 10.1364/BOE.4.000245. Epub 2013 Jan 16.

12.

Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention.

Huang Y, Liu X, Song C, Kang JU.

Biomed Opt Express. 2012 Dec 1;3(12):3105-18. doi: 10.1364/BOE.3.003105. Epub 2012 Nov 1.

13.

Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm.

Lee SW, Jeong HW, Kim BM, Ahn YC, Jung W, Chen Z.

J Korean Phys Soc. 2009 Dec 12;55(6):2354-2360.

14.

Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina.

Choi W, Baumann B, Swanson EA, Fujimoto JG.

Opt Express. 2012 Nov 5;20(23):25357-68. doi: 10.1364/OE.20.025357.

15.

Thinned-skull cortical window technique for in vivo optical coherence tomography imaging.

Szu JI, Eberle MM, Reynolds CL, Hsu MS, Wang Y, Oh CM, Islam MS, Park BH, Binder DK.

J Vis Exp. 2012 Nov 19;(69):e50053. doi: 10.3791/50053.

16.

In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography.

Eberle MM, Reynolds CL, Szu JI, Wang Y, Hansen AM, Hsu MS, Islam MS, Binder DK, Park BH.

Biomed Opt Express. 2012 Nov 1;3(11):2700-6. doi: 10.1364/BOE.3.002700. Epub 2012 Oct 2.

17.

Epithelium and Bowman's layer thickness and light scatter in keratoconic cornea evaluated using ultrahigh resolution optical coherence tomography.

Yadav R, Kottaiyan R, Ahmad K, Yoon G.

J Biomed Opt. 2012 Nov;17(11):116010. doi: 10.1117/1.JBO.17.11.116010.

18.

Quantitative analysis of the intraretinal layers and optic nerve head using ultra-high resolution optical coherence tomography.

Wang Y, Jiang H, Shen M, Lam BL, DeBuc DC, Ye Y, Li M, Tao A, Shao Y, Wang J.

J Biomed Opt. 2012 Jun;17(6):066013. doi: 10.1117/1.JBO.17.6.066013.

19.

Automated segmentation of intramacular layers in Fourier domain optical coherence tomography structural images from normal subjects.

Zhang X, Yousefi S, An L, Wang RK.

J Biomed Opt. 2012 Apr;17(4):046011. doi: 10.1117/1.JBO.17.4.046011.

20.

Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography.

Yuan Y, Chen F, Shen M, Lu F, Wang J.

Eye Contact Lens. 2012 Mar;38(2):102-8. doi: 10.1097/ICL.0b013e318243e795.

Supplemental Content

Support Center