Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 20

1.

Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.

Vyazovskiy VV, Palchykova S, Achermann P, Tobler I, Deboer T.

Cereb Cortex. 2017 Feb 1;27(2):950-961. doi: 10.1093/cercor/bhx020.

2.

The effect of brumation on memory retention.

Wilkinson A, Hloch A, Mueller-Paul J, Huber L.

Sci Rep. 2017 Jan 11;7:40079. doi: 10.1038/srep40079.

3.

Neural Signaling Metabolites May Modulate Energy Use in Hibernation.

Drew KL, Frare C, Rice SA.

Neurochem Res. 2017 Jan;42(1):141-150. doi: 10.1007/s11064-016-2109-4. Epub 2016 Nov 23. Review.

4.

Hibernation in a primate: does sleep occur?

Blanco MB, Dausmann KH, Faherty SL, Klopfer P, Krystal AD, Schopler R, Yoder AD.

R Soc Open Sci. 2016 Aug 10;3(8):160282. eCollection 2016 Aug.

5.

Telomere dynamics in free-living edible dormice (Glis glis): the impact of hibernation and food supply.

Hoelzl F, Cornils JS, Smith S, Moodley Y, Ruf T.

J Exp Biol. 2016 Aug 15;219(Pt 16):2469-74. doi: 10.1242/jeb.140871.

6.

White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection.

Lilley TM, Johnson JS, Ruokolainen L, Rogers EJ, Wilson CA, Schell SM, Field KA, Reeder DM.

Front Zool. 2016 Mar 3;13:12. doi: 10.1186/s12983-016-0143-3. eCollection 2016.

7.

Sleep, recovery, and metaregulation: explaining the benefits of sleep.

Vyazovskiy VV.

Nat Sci Sleep. 2015 Dec 17;7:171-84. doi: 10.2147/NSS.S54036. eCollection 2015.

8.

Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster.

Antón-Fernández A, León-Espinosa G, DeFelipe J, Muñoz A.

Front Neuroanat. 2015 Dec 15;9:157. doi: 10.3389/fnana.2015.00157. eCollection 2015.

9.

Cortical neuronal activity does not regulate sleep homeostasis.

Qiu MH, Chen MC, Lu J.

Neuroscience. 2015 Jun 25;297:211-8. doi: 10.1016/j.neuroscience.2015.03.070. Epub 2015 Apr 9.

10.

Comparative functional genomics of adaptation to muscular disuse in hibernating mammals.

Fedorov VB, Goropashnaya AV, Stewart NC, Tøien Ø, Chang C, Wang H, Yan J, Showe LC, Showe MK, Barnes BM.

Mol Ecol. 2014 Nov;23(22):5524-37. doi: 10.1111/mec.12963. Epub 2014 Nov 3.

11.

The relationship of sleep with temperature and metabolic rate in a hibernating primate.

Krystal AD, Schopler B, Kobbe S, Williams C, Rakatondrainibe H, Yoder AD, Klopfer P.

PLoS One. 2013 Sep 4;8(9):e69914. doi: 10.1371/journal.pone.0069914. eCollection 2013.

12.

Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes.

Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J.

BMC Genomics. 2013 Aug 20;14:567. doi: 10.1186/1471-2164-14-567.

13.

Seasonal and regional differences in gene expression in the brain of a hibernating mammal.

Schwartz C, Hampton M, Andrews MT.

PLoS One. 2013;8(3):e58427. doi: 10.1371/journal.pone.0058427. Epub 2013 Mar 20.

14.

Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation.

Hindle AG, Karimpour-Fard A, Epperson LE, Hunter LE, Martin SL.

Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1440-52. doi: 10.1152/ajpregu.00298.2011. Epub 2011 Aug 24.

15.
16.

The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.

Stieler JT, Bullmann T, Kohl F, Tøien Ø, Brückner MK, Härtig W, Barnes BM, Arendt T.

PLoS One. 2011 Jan 18;6(1):e14530. doi: 10.1371/journal.pone.0014530.

17.

The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation.

Roth TC 2nd, Rattenborg NC, Pravosudov VV.

Philos Trans R Soc Lond B Biol Sci. 2010 Mar 27;365(1542):945-59. doi: 10.1098/rstb.2009.0209. Review.

18.

Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength.

McGee-Lawrence ME, Carey HV, Donahue SW.

Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1999-2014. doi: 10.1152/ajpregu.90648.2008. Epub 2008 Oct 8. Review.

19.

Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel.

Bratincsák A, McMullen D, Miyake S, Tóth ZE, Hallenbeck JM, Palkovits M.

J Comp Neurol. 2007 Dec 1;505(4):443-58.

20.

mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii).

Knight JE, Narus EN, Martin SL, Jacobson A, Barnes BM, Boyer BB.

Mol Cell Biol. 2000 Sep;20(17):6374-9.

Supplemental Content

Support Center