Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 49

1.

Soluble Ectodomain of Neuroligin 1 Decreases Synaptic Activity by Activating Metabotropic Glutamate Receptor 2.

Gjørlund MD, Carlsen EMM, Kønig AB, Dmytrieva O, Petersen AV, Jacobsen J, Berezin V, Perrier JF, Owczarek S.

Front Mol Neurosci. 2017 May 3;10:116. doi: 10.3389/fnmol.2017.00116. eCollection 2017.

2.

Forced neuronal interactions cause poor communication.

Krzisch M, Toni N.

Neurogenesis (Austin). 2017 Feb 6;4(1):e1286424. doi: 10.1080/23262133.2017.1286424. eCollection 2017.

PMID:
28265586
3.

Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students.

Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C.

J Neurochem. 2016 Sep;138(6):785-805. doi: 10.1111/jnc.13713. Epub 2016 Sep 8. Review.

4.

Mouse Genetic Models of Human Brain Disorders.

Leung C, Jia Z.

Front Genet. 2016 Mar 23;7:40. doi: 10.3389/fgene.2016.00040. eCollection 2016. Review.

5.

Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

Williams AJ, Yee P, Smith MC, Murphy GG, Umemori H.

Behav Brain Res. 2016 Jul 1;307:11-7. doi: 10.1016/j.bbr.2016.03.047. Epub 2016 Mar 29.

6.

The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain.

Peng Y, Lu Z, Li G, Piechowicz M, Anderson M, Uddin Y, Wu J, Qiu S.

Mol Psychiatry. 2016 Jul;21(7):925-35. doi: 10.1038/mp.2015.182. Epub 2016 Jan 5.

7.

Neuroligin 1 modulates striatal glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner.

Espinosa F, Xuan Z, Liu S, Powell CM.

Front Synaptic Neurosci. 2015 Jul 29;7:11. doi: 10.3389/fnsyn.2015.00011. eCollection 2015.

8.

Neuroligin-2 Expression in the Prefrontal Cortex is Involved in Attention Deficits Induced by Peripubertal Stress.

Tzanoulinou S, García-Mompó C, Riccio O, Grosse J, Zanoletti O, Dedousis P, Nacher J, Sandi C.

Neuropsychopharmacology. 2016 Feb;41(3):751-61. doi: 10.1038/npp.2015.200. Epub 2015 Jul 8.

9.

A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment.

Korshunova I, Gjørlund MD, Owczarek S, Petersen AV, Perrier JF, Gøtzsche CR, Berezin V.

Pharmacol Res Perspect. 2015 Mar;3(2):e00126. doi: 10.1002/prp2.126. Epub 2015 Mar 13.

10.

The interplay between synaptic activity and neuroligin function in the CNS.

Hu X, Luo JH, Xu J.

Biomed Res Int. 2015;2015:498957. doi: 10.1155/2015/498957. Epub 2015 Mar 9. Review.

11.
12.

In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration.

Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL.

J Comp Neurol. 2015 Jun 15;523(9):1359-78. doi: 10.1002/cne.23740. Epub 2015 Apr 8.

13.

Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features.

Ross JL, Tartaglia N, Merry DE, Dalva M, Zinn AR.

Genes Brain Behav. 2015 Feb;14(2):137-44. doi: 10.1111/gbb.12200. Epub 2015 Feb 1.

14.

Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR.

Oguro-Ando A, Rosensweig C, Herman E, Nishimura Y, Werling D, Bill BR, Berg JM, Gao F, Coppola G, Abrahams BS, Geschwind DH.

Mol Psychiatry. 2015 Sep;20(9):1069-78. doi: 10.1038/mp.2014.124. Epub 2014 Oct 14.

15.

Animal models of tic disorders: a translational perspective.

Godar SC, Mosher LJ, Di Giovanni G, Bortolato M.

J Neurosci Methods. 2014 Dec 30;238:54-69. doi: 10.1016/j.jneumeth.2014.09.008. Epub 2014 Sep 20. Review.

16.

Synapse assembly and neurodevelopmental disorders.

Washbourne P.

Neuropsychopharmacology. 2015 Jan;40(1):4-15. doi: 10.1038/npp.2014.163. Epub 2014 Jul 3. Review.

17.

Sleep, plasticity and the pathophysiology of neurodevelopmental disorders: the potential roles of protein synthesis and other cellular processes.

Picchioni D, Reith RM, Nadel JL, Smith CB.

Brain Sci. 2014 Mar 1;4(1):150-201. doi: 10.3390/brainsci4010150.

18.

Simiate is an Actin binding protein involved in filopodia dynamics and arborization of neurons.

Derlig K, Ehrhardt T, Gießl A, Brandstätter JH, Enz R, Dahlhaus R.

Front Cell Neurosci. 2014 Apr 8;8:99. doi: 10.3389/fncel.2014.00099. eCollection 2014.

19.

The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome.

Uzunova G, Hollander E, Shepherd J.

Curr Neuropharmacol. 2014 Jan;12(1):71-98. doi: 10.2174/1570159X113116660046.

20.

Translational control and autism-like behaviors.

Gkogkas CG, Sonenberg N.

Cell Logist. 2013 Jan 1;3(1):e24551. Epub 2013 Apr 4.

Supplemental Content

Support Center