Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 77

1.

hsa-miR-301a- and SOX10-dependent miRNA-TF-mRNA regulatory circuits in breast cancer.

Öztemur Islakoğlu Y, Noyan S, Gür Dedeoğlu B.

Turk J Biol. 2018 Apr 27;42(2):103-112. doi: 10.3906/biy-1708-17. eCollection 2018.

2.

A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes.

Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K.

BMC Genomics. 2019 Feb 6;20(1):114. doi: 10.1186/s12864-019-5464-0.

3.

Epigenetic mechanisms as a new approach in cancer treatment: An updated review.

Fardi M, Solali S, Farshdousti Hagh M.

Genes Dis. 2018 Jun 18;5(4):304-311. doi: 10.1016/j.gendis.2018.06.003. eCollection 2018 Dec. Review.

4.

miRmapper: A Tool for Interpretation of miRNA⁻mRNA Interaction Networks.

da Silveira WA, Renaud L, Simpson J, Glen WB Jr, Hazard ES, Chung D, Hardiman G.

Genes (Basel). 2018 Sep 14;9(9). pii: E458. doi: 10.3390/genes9090458.

5.

The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs.

Pellatt AJ, Mullany LE, Herrick JS, Sakoda LC, Wolff RK, Samowitz WS, Slattery ML.

J Transl Med. 2018 Jul 9;16(1):191. doi: 10.1186/s12967-018-1566-8.

6.

A workflow for the integrative transcriptomic description of molecular pathology and the suggestion of normalizing compounds, exemplified by Parkinson's disease.

Hamed M, Gladbach Y, Möller S, Fischer S, Ernst M, Struckmann S, Storch A, Fuellen G.

Sci Rep. 2018 May 21;8(1):7937. doi: 10.1038/s41598-018-25754-5.

7.

Hierarchical structural component modeling of microRNA-mRNA integration analysis.

Kim Y, Lee S, Choi S, Jang JY, Park T.

BMC Bioinformatics. 2018 May 8;19(Suppl 4):75. doi: 10.1186/s12859-018-2070-0.

8.

mirDIP 4.1-integrative database of human microRNA target predictions.

Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I.

Nucleic Acids Res. 2018 Jan 4;46(D1):D360-D370. doi: 10.1093/nar/gkx1144.

9.

Infrequently expressed miRNAs influence survival after diagnosis with colorectal cancer.

Slattery ML, Pellatt AJ, Lee FY, Herrick JS, Samowitz WS, Stevens JR, Wolff RK, Mullany LE.

Oncotarget. 2017 Aug 3;8(48):83845-83859. doi: 10.18632/oncotarget.19863. eCollection 2017 Oct 13.

10.

The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer.

Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK.

Genes Chromosomes Cancer. 2017 Nov;56(11):769-787. doi: 10.1002/gcc.22481. Epub 2017 Jul 30.

11.

Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype.

Slattery ML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, Samowitz WS, Wolff RK, Herrick JS.

Mod Pathol. 2017 Aug;30(8):1152-1169. doi: 10.1038/modpathol.2017.38. Epub 2017 May 26. Erratum in: Mod Pathol. 2018 Jan;31(1):209.

12.

Literature-based condition-specific miRNA-mRNA target prediction.

Oh M, Rhee S, Moon JH, Chae H, Lee S, Kang J, Kim S.

PLoS One. 2017 Mar 31;12(3):e0174999. doi: 10.1371/journal.pone.0174999. eCollection 2017.

13.

Gene-microRNA network module analysis for ovarian cancer.

Zhang S, Ng MK.

BMC Syst Biol. 2016 Dec 23;10(Suppl 4):117. doi: 10.1186/s12918-016-0357-1.

14.

Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus.

Fang L, Hou Y, An J, Li B, Song M, Wang X, Sørensen P, Dong Y, Liu C, Wang Y, Zhu H, Zhang S, Yu Y.

Front Cell Infect Microbiol. 2016 Dec 26;6:193. doi: 10.3389/fcimb.2016.00193. eCollection 2016.

15.

Diet and lifestyle factors associated with miRNA expression in colorectal tissue.

Slattery ML, Herrick JS, Mullany LE, Stevens JR, Wolff RK.

Pharmgenomics Pers Med. 2016 Dec 20;10:1-16. doi: 10.2147/PGPM.S117796. eCollection 2017.

16.

MICRORNA-AUGMENTED PATHWAYS (mirAP) AND THEIR APPLICATIONS TO PATHWAY ANALYSIS AND DISEASE SUBTYPING.

Diaz D, Donato M, Nguyen T, Draghici S.

Pac Symp Biocomput. 2017;22:390-401. doi: 10.1142/9789813207813_0037.

17.

Integrated analysis of omics data using microRNA-target mRNA network and PPI network reveals regulation of Gnai1 function in the spinal cord of Ews/Ewsr1 KO mice.

Lee CJ, Ahn H, Lee SB, Shin JY, Park WY, Kim JI, Lee J, Ryu H, Kim S.

BMC Med Genomics. 2016 Aug 12;9 Suppl 1:33. doi: 10.1186/s12920-016-0195-4.

18.
19.

MiRSEA: Discovering the pathways regulated by dysfunctional MicroRNAs.

Han J, Liu S, Zhang Y, Xu Y, Jiang Y, Zhang C, Li C, Li X.

Oncotarget. 2016 Aug 23;7(34):55012-55025. doi: 10.18632/oncotarget.10839.

20.

Identification and Characterization of Sex-Biased MicroRNAs in Bactrocera dorsalis (Hendel).

Peng W, Tariq K, Xie J, Zhang H.

PLoS One. 2016 Jul 21;11(7):e0159591. doi: 10.1371/journal.pone.0159591. eCollection 2016.

Supplemental Content

Support Center