Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 36

1.
2.

Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions.

Vannozzi A, Donnini S, Vigani G, Corso M, Valle G, Vitulo N, Bonghi C, Zocchi G, Lucchin M.

Front Plant Sci. 2017 Jan 5;7:1994. doi: 10.3389/fpls.2016.01994.

4.

Comparative expression profiling reveals a role of the root apoplast in local phosphate response.

Hoehenwarter W, Mönchgesang S, Neumann S, Majovsky P, Abel S, Müller J.

BMC Plant Biol. 2016 Apr 28;16:106. doi: 10.1186/s12870-016-0790-8.

5.

Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent.

Zamboni A, Zanin L, Tomasi N, Avesani L, Pinton R, Varanini Z, Cesco S.

BMC Genomics. 2016 Jan 7;17:35. doi: 10.1186/s12864-015-2331-5.

6.

The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

Eroglu S, Meier B, von Wirén N, Peiter E.

Plant Physiol. 2016 Feb;170(2):1030-45. doi: 10.1104/pp.15.01194.

8.

Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response.

Koryachko A, Matthiadis A, Muhammad D, Foret J, Brady SM, Ducoste JJ, Tuck J, Long TA, Williams C.

PLoS One. 2015 Aug 28;10(8):e0136591. doi: 10.1371/journal.pone.0136591.

9.

Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.

Zamioudis C, Korteland J, Van Pelt JA, van Hamersveld M, Dombrowski N, Bai Y, Hanson J, Van Verk MC, Ling HQ, Schulze-Lefert P, Pieterse CM.

Plant J. 2015 Oct;84(2):309-22. doi: 10.1111/tpj.12995.

10.

GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of FERRIC REDUCTASE DEFECTIVE3 Contributes to Iron Homeostasis in Arabidopsis.

Xing J, Wang T, Liu Z, Xu J, Yao Y, Hu Z, Peng H, Xin M, Yu F, Zhou D, Ni Z.

Plant Physiol. 2015 Aug;168(4):1309-20. doi: 10.1104/pp.15.00397.

11.

Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.

Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ.

PLoS One. 2014 Oct 31;9(10):e110468. doi: 10.1371/journal.pone.0110468.

12.

Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves.

Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA.

BMC Genomics. 2014 Aug 22;15:702. doi: 10.1186/1471-2164-15-702.

13.
14.
15.

Ups and downs of a transcriptional landscape shape iron deficiency associated chlorosis of the maize inbreds B73 and Mo17.

Urbany C, Benke A, Marsian J, Huettel B, Reinhardt R, Stich B.

BMC Plant Biol. 2013 Dec 13;13:213. doi: 10.1186/1471-2229-13-213.

16.

MYB10 and MYB72 are required for growth under iron-limiting conditions.

Palmer CM, Hindt MN, Schmidt H, Clemens S, Guerinot ML.

PLoS Genet. 2013 Nov;9(11):e1003953. doi: 10.1371/journal.pgen.1003953.

17.

Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis.

Schmid NB, Giehl RF, Döll S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N.

Plant Physiol. 2014 Jan;164(1):160-72. doi: 10.1104/pp.113.228544.

18.

Optimal copper supply is required for normal plant iron deficiency responses.

Waters BM, Armbrust LC.

Plant Signal Behav. 2013;8(12):e26611. doi: 10.4161/psb.26611.

19.

Iron economy in Chlamydomonas reinhardtii.

Glaesener AG, Merchant SS, Blaby-Haas CE.

Front Plant Sci. 2013 Sep 2;4:337. doi: 10.3389/fpls.2013.00337. Review.

20.

The transcriptional response of Arabidopsis leaves to Fe deficiency.

Rodríguez-Celma J, Pan IC, Li W, Lan P, Buckhout TJ, Schmidt W.

Front Plant Sci. 2013 Jul 23;4:276. doi: 10.3389/fpls.2013.00276.

Supplemental Content

Support Center