Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 52

1.

TDP-43/FUS in motor neuron disease: Complexity and challenges.

Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML.

Prog Neurobiol. 2016 Oct - Nov;145-146:78-97. doi: 10.1016/j.pneurobio.2016.09.004. Review.

PMID:
27693252
2.

Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China.

Hou L, Jiao B, Xiao T, Zhou L, Zhou Z, Du J, Yan X, Wang J, Tang B, Shen L.

Sci Rep. 2016 Sep 8;6:32478. doi: 10.1038/srep32478.

3.

From animal models to human disease: a genetic approach for personalized medicine in ALS.

Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N.

Acta Neuropathol Commun. 2016 Jul 11;4(1):70. doi: 10.1186/s40478-016-0340-5. Review.

4.

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses.

Kapeli K, Pratt GA, Vu AQ, Hutt KR, Martinez FJ, Sundararaman B, Batra R, Freese P, Lambert NJ, Huelga SC, Chun SJ, Liang TY, Chang J, Donohue JP, Shiue L, Zhang J, Zhu H, Cambi F, Kasarskis E, Hoon S, Ares M Jr, Burge CB, Ravits J, Rigo F, Yeo GW.

Nat Commun. 2016 Jul 5;7:12143. doi: 10.1038/ncomms12143.

5.

Defining the spectrum of frontotemporal dementias associated with TARDBP mutations.

Caroppo P, Camuzat A, Guillot-Noel L, Thomas-Antérion C, Couratier P, Wong TH, Teichmann M, Golfier V, Auriacombe S, Belliard S, Laurent B, Lattante S, Millecamps S, Clot F, Dubois B, van Swieten JC, Brice A, Le Ber I.

Neurol Genet. 2016 May 26;2(3):e80. doi: 10.1212/NXG.0000000000000080.

6.

Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts.

Onesto E, Colombrita C, Gumina V, Borghi MO, Dusi S, Doretti A, Fagiolari G, Invernizzi F, Moggio M, Tiranti V, Silani V, Ratti A.

Acta Neuropathol Commun. 2016 May 5;4(1):47. doi: 10.1186/s40478-016-0316-5.

7.

The hnRNP-Htt axis regulates necrotic cell death induced by transcriptional repression through impaired RNA splicing.

Mao Y, Tamura T, Yuki Y, Abe D, Tamada Y, Imoto S, Tanaka H, Homma H, Tagawa K, Miyano S, Okazawa H.

Cell Death Dis. 2016 Apr 28;7:e2207. doi: 10.1038/cddis.2016.101.

8.

Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation.

Jiang LL, Zhao J, Yin XF, He WT, Yang H, Che MX, Hu HY.

Sci Rep. 2016 Mar 31;6:23928. doi: 10.1038/srep23928.

9.

Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains.

Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y, Yoshida M, Hasegawa M.

Sci Rep. 2016 Mar 16;6:23281. doi: 10.1038/srep23281.

10.

Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation.

Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CK, Yuan HS.

Sci Rep. 2016 Feb 17;6:21581. doi: 10.1038/srep21581.

11.

A network of RNA and protein interactions in Fronto Temporal Dementia.

Fontana F, Siva K, Denti MA.

Front Mol Neurosci. 2015 Mar 19;8:9. doi: 10.3389/fnmol.2015.00009. Review.

12.

TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets.

Scotter EL, Chen HJ, Shaw CE.

Neurotherapeutics. 2015 Apr;12(2):352-63. doi: 10.1007/s13311-015-0338-x. Review. Erratum in: Neurotherapeutics. 2015 Apr;12(2):515-8.

13.
14.

Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells.

Nishimura AL, Shum C, Scotter EL, Abdelgany A, Sardone V, Wright J, Lee YB, Chen HJ, Bilican B, Carrasco M, Maniatis T, Chandran S, Rogelj B, Gallo JM, Shaw CE.

PLoS One. 2014 Mar 20;9(3):e91269. doi: 10.1371/journal.pone.0091269.

15.

ALS-associated TDP-43 induces endoplasmic reticulum stress, which drives cytoplasmic TDP-43 accumulation and stress granule formation.

Walker AK, Soo KY, Sundaramoorthy V, Parakh S, Ma Y, Farg MA, Wallace RH, Crouch PJ, Turner BJ, Horne MK, Atkin JD.

PLoS One. 2013 Nov 29;8(11):e81170. doi: 10.1371/journal.pone.0081170.

16.

Amyotrophic lateral sclerosis: applications of stem cells - an update.

Cova L, Silani V.

Stem Cells Cloning. 2010 Oct 27;3:145-56. doi: 10.2147/SCCAA.S8662. Review.

17.

Wild-type but not mutant SOD1 transgenic astrocytes promote the efficient generation of motor neuron progenitors from mouse embryonic stem cells.

Christou YA, Ohyama K, Placzek M, Monk PN, Shaw PJ.

BMC Neurosci. 2013 Oct 17;14:126. doi: 10.1186/1471-2202-14-126.

18.

Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing.

Kenna KP, McLaughlin RL, Byrne S, Elamin M, Heverin M, Kenny EM, Cormican P, Morris DW, Donaghy CG, Bradley DG, Hardiman O.

J Med Genet. 2013 Nov;50(11):776-83. doi: 10.1136/jmedgenet-2013-101795.

19.

Protein aggregation in amyotrophic lateral sclerosis.

Blokhuis AM, Groen EJ, Koppers M, van den Berg LH, Pasterkamp RJ.

Acta Neuropathol. 2013 Jun;125(6):777-94. doi: 10.1007/s00401-013-1125-6. Review.

20.

Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins.

Watanabe S, Kaneko K, Yamanaka K.

J Biol Chem. 2013 Feb 1;288(5):3641-54. doi: 10.1074/jbc.M112.433615.

Items per page

Supplemental Content

Support Center