Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 22

1.

Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras.

Peeters K, Van Leemputte F, Fischer B, Bonini BM, Quezada H, Tsytlonok M, Haesen D, Vanthienen W, Bernardes N, Gonzalez-Blas CB, Janssens V, Tompa P, Versées W, Thevelein JM.

Nat Commun. 2017 Oct 13;8(1):922. doi: 10.1038/s41467-017-01019-z.

2.

A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B.

PLoS One. 2017 Sep 18;12(9):e0184838. doi: 10.1371/journal.pone.0184838. eCollection 2017.

3.

Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells.

Vasicova P, Rinnerthaler M, Haskova D, Novakova L, Malcova I, Breitenbach M, Hasek J.

Microb Cell. 2016 Apr 12;3(5):206-214. doi: 10.15698/mic2016.05.499.

4.

Longevity pathways and maintenance of the proteome: the role of autophagy and mitophagy during yeast ageing.

Sampaio-Marques B, Burhans WC, Ludovico P.

Microb Cell. 2014 Apr 7;1(4):118-127. doi: 10.15698/mic2014.04.136. Review.

5.

New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis.

Bastow EL, Peswani AR, Tarrant DS, Pentland DR, Chen X, Morgan A, Staniforth GL, Tullet JM, Rowe ML, Howard MJ, Tuite MF, Gourlay CW.

J Cell Sci. 2016 Nov 1;129(21):4118-4129. Epub 2016 Sep 21.

6.

Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Oncotarget. 2016 Mar 1;7(9):10153-73. doi: 10.18632/oncotarget.7174.

7.

Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

Chen Y, Stabryla L, Wei N.

Appl Environ Microbiol. 2016 Jan 29;82(7):2156-66. doi: 10.1128/AEM.03718-15.

8.

Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response.

Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N.

Mol Syst Biol. 2015 Oct 7;11(10):829. doi: 10.15252/msb.20156451.

9.

The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span.

Vasicova P, Lejskova R, Malcova I, Hasek J.

Mol Cell Biol. 2015 Nov;35(22):3892-908. doi: 10.1128/MCB.00811-15. Epub 2015 Sep 8.

10.

Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy.

Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ.

PLoS One. 2014 Oct 21;9(10):e110603. doi: 10.1371/journal.pone.0110603. eCollection 2014.

11.

Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2.

Fu C, Ao J, Dettmann A, Seiler S, Free SJ.

PLoS One. 2014 Oct 3;9(10):e107773. doi: 10.1371/journal.pone.0107773. eCollection 2014.

12.

The many ways to age for a single yeast cell.

Carmona-Gutierrez D, Büttner S.

Yeast. 2014 Aug;31(8):289-98. doi: 10.1002/yea.3020. Epub 2014 Jun 13. Review.

13.

Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae.

Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM.

FEMS Microbiol Rev. 2014 Mar;38(2):254-99. doi: 10.1111/1574-6976.12065. Epub 2014 Mar 3. Review.

14.

Oxygen-glucose-deprived rat primary neural cells exhibit DJ-1 translocation into healthy mitochondria: a potent stroke therapeutic target.

Kaneko Y, Tajiri N, Shojo H, Borlongan CV.

CNS Neurosci Ther. 2014 Mar;20(3):275-81. doi: 10.1111/cns.12208. Epub 2013 Dec 30.

15.

Nuclear Ras2-GTP controls invasive growth in Saccharomyces cerevisiae.

Broggi S, Martegani E, Colombo S.

PLoS One. 2013 Nov 14;8(11):e79274. doi: 10.1371/journal.pone.0079274. eCollection 2013.

16.

Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae.

Amigoni L, Martegani E, Colombo S.

Oxid Med Cell Longev. 2013;2013:678473. doi: 10.1155/2013/678473. Epub 2013 Sep 5.

17.

Quantification of genetically controlled cell death in budding yeast.

Teng X, Hardwick JM.

Methods Mol Biol. 2013;1004:161-70. doi: 10.1007/978-1-62703-383-1_12.

18.

Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae.

Ignea C, Trikka FA, Kourtzelis I, Argiriou A, Kanellis AK, Kampranis SC, Makris AM.

Microb Cell Fact. 2012 Dec 22;11:162. doi: 10.1186/1475-2859-11-162.

19.

The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae.

Van Rossom S, Op de Beeck K, Franssens V, Swinnen E, Schepers A, Ghillebert R, Caldara M, Van Camp G, Winderickx J.

Front Oncol. 2012 Jul 25;2:77. doi: 10.3389/fonc.2012.00077. eCollection 2012.

20.

Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in Saccharomyces cerevisiae.

Jungbluth M, Mösch HU, Taxis C.

Eukaryot Cell. 2012 Aug;11(8):1021-32. doi: 10.1128/EC.05240-11. Epub 2012 Jun 1.

Supplemental Content

Support Center