Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 14

1.

Mapping of internal monophosphate 5' ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains.

DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH.

Nucleic Acids Res. 2016 Apr 20;44(7):3373-89. doi: 10.1093/nar/gkw073.

2.

Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3' ends.

Liu B, Kearns DB, Bechhofer DH.

Nucleic Acids Res. 2016 Apr 20;44(7):3364-72. doi: 10.1093/nar/gkw069.

3.

Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

Salvo E, Alabi S, Liu B, Schlessinger A, Bechhofer DH.

J Biol Chem. 2016 Mar 25;291(13):6655-63. doi: 10.1074/jbc.M115.711044.

PMID:
26797123
4.

A nitric oxide regulated small RNA controls expression of genes involved in redox homeostasis in Bacillus subtilis.

Durand S, Braun F, Lioliou E, Romilly C, Helfer AC, Kuhn L, Quittot N, Nicolas P, Romby P, Condon C.

PLoS Genet. 2015 Feb 2;11(2):e1004957. doi: 10.1371/journal.pgen.1004957.

5.

Small stable RNA maturation and turnover in Bacillus subtilis.

Gilet L, DiChiara JM, Figaro S, Bechhofer DH, Condon C.

Mol Microbiol. 2015 Jan;95(2):270-82. doi: 10.1111/mmi.12863.

6.

Identification of an outer membrane lipoprotein involved in nasopharyngeal colonization by Moraxella catarrhalis in an animal model.

Wang W, Joslin SN, Pybus C, Evans AS, Lichaa F, Brautigam CA, Hansen EJ.

Infect Immun. 2014 Jun;82(6):2287-99. doi: 10.1128/IAI.01745-14.

7.

SCO5745, a bifunctional RNase J ortholog, affects antibiotic production in Streptomyces coelicolor.

Bralley P, Aseem M, Jones GH.

J Bacteriol. 2014 Mar;196(6):1197-205. doi: 10.1128/JB.01422-13.

8.

The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine.

Gaugué I, Oberto J, Putzer H, Plumbridge J.

PLoS One. 2013 May 8;8(5):e63025. doi: 10.1371/journal.pone.0063025.

9.

Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs.

Durand S, Gilet L, Bessières P, Nicolas P, Condon C.

PLoS Genet. 2012;8(3):e1002520. doi: 10.1371/journal.pgen.1002520.

10.

Use of the chinchilla model for nasopharyngeal colonization to study gene expression by Moraxella catarrhalis.

Hoopman TC, Liu W, Joslin SN, Pybus C, Sedillo JL, Labandeira-Rey M, Laurence CA, Wang W, Richardson JA, Bakaletz LO, Hansen EJ.

Infect Immun. 2012 Mar;80(3):982-95. doi: 10.1128/IAI.05918-11.

11.

An RNA pyrophosphohydrolase triggers 5'-exonucleolytic degradation of mRNA in Bacillus subtilis.

Richards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, Condon C, Belasco JG.

Mol Cell. 2011 Sep 16;43(6):940-9. doi: 10.1016/j.molcel.2011.07.023.

12.

CsfG, a sporulation-specific, small non-coding RNA highly conserved in endospore formers.

Marchais A, Duperrier S, Durand S, Gautheret D, Stragier P.

RNA Biol. 2011 May-Jun;8(3):358-64.

13.

Maturation of 23S rRNA in Bacillus subtilis in the absence of Mini-III.

Redko Y, Condon C.

J Bacteriol. 2010 Jan;192(1):356-9. doi: 10.1128/JB.01096-09.

14.

Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.

Fang M, Zeisberg WM, Condon C, Ogryzko V, Danchin A, Mechold U.

Nucleic Acids Res. 2009 Aug;37(15):5114-25. doi: 10.1093/nar/gkp527.

Supplemental Content

Support Center